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Abstract

A fundamental problem when locating sensors in a network is to estimate the distance between pairs of sensors.

This paper considers a variety of time-of-arrival and phase-shift approaches that use bidirectional signalling to bypass

the need for accurate synchronous clocking. The measurement techniques are simulated and analyzed to assess the

accuracy of the distance estimation. The analysis demonstrates trade-offs between the accuracy of the oscillators, the

accuracy of the subsequent distance estimation, and the complexity of the methods.

EDICS: SEN-COLB Collaborative Signal Processing; SPC-DETC Detection, Estimation, and Demodulation.

1 Introduction

Sensor location estimation is required in many sensor network applications [1]-[5]. Due to the low power, lower

cost, and simple configuration requirements of wireless sensor networks, GPS devices, accurate synchronous clocks,

and the installation of a base station may be precluded. However, when all sensors can measure the range to their

neighbors, accurate relative location estimates are possible [6]-[13].

This paper investigates two methods for distance measurement using bidirectional communications: (1) Distance

Estimation via Asynchronous Clocks (DEVAC) and (2) Distance Estimation via Asynchronous Phase Shift (DEVAPS).
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The DEVAC method operates analogously to a pulsed radar in which a signal is bounced from the target and the

distance is determined by how long it takes the signal to return. Since sensors are typically small and operate with

low power; the signal cannot bounce from the receiver. Instead, the target sensor receives the transmission and sends a

reply that acts analogously to the return of the radar. The DEVAPS method operates analogously to a continuous wave

radar in which a sinusoidal signal is bounced from the target. In this case, the distance is determined by the phase

shift between the signal and its rebound. Though the individual distance measurements are ambiguous, the ambiguity

can be resolved by repeating the procedure with different wavelength carriers. Thus the sensors operate cooperatively

(bidirectionally) in order to synthesize a signal that acts like the reflection in a radar system.

In order to understand the behavior of the network, it is also necessary to measure the accuracy of the estimation

[14]-[16]. This paper presents an estimation-theoretic analysis of the proposed measurement mechanisms to assess

the achievable estimation accuracy. Specifically, quantitative expressions are provided to demonstrate the operation of

the DEVAC method, and the Cramer-Rao Bound on phase and frequency accuracy are computed to show the limits of

performance with the DEVAPS method.

The analytical portions of this paper assume that only the line-of-sight (LOS) path exists. However, in real radio

channels, there may exist multiple transmission paths between the sensors. In order to investigate the effect of this

multipath interference on the distance estimations, the performance is evaluated in two multipath environments as

detailed in Section 6.2.

The rest of the paper is organized as follows: Section 2 provides a brief literature review on range-measurement

techniques. Section 3 describes and analyzes the DEVAC method using bidirectional communication between sensors

to establish time stamps that correctly adjust for asynchronies in the clocks. Section 4 presents the DEVAPS method

which measures the time indirectly using the phase of a carrier signal; an analysis of the estimated phase error using

either a ML estimator or a phase-locked loop is derived to examine the accuracy of the distance estimation. Section 5

explores the trade-offs of the distance measurement using the DEVAC and DEVAPS methods given the same energy

consumption. Section 6 provides an overall comparison and investigates the behaviors of the different methods using

signals in several frequency bands. The performance is presented via simulations and numerical examples considering

measurement errors from several sources such as timing resolution, processing delay, and clock calibration in the

DEVAC method and phase and frequency estimation accuracy in the DEVAPS method. The simulations verify the

approximate Gaussian distributions of the range measurements using DEVAC and DEVAPS methods and examine

the multipath contributions to the performance of the respective methods. The final section concludes and discusses
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variations of the proposed ranging techniques.

2 Related Work

The distances between pairs of transceivers in a sensor network may be determined by using time of arrival (TOA),

angle of arrival (AOA), or received signal strength (RSS) measurements of signals with RF-based [17]-[19],[29],[30],

[32]-[34], acoustic [20],[21],[31], or ultra-wideband [22]-[24] techniques. Overviews of techniques for ranging can

be found in [25] and [26].

Many methods of distance measurement use one-way communication to estimate distances between pairs of sen-

sors that typically require time synchronization or accurately characterized path loss models. Time-of-arrival tech-

niques often require that the transmitter and receiver are synchronized in time; the transmitter places a time stamp

on the transmission and sends that to the receiver which can then estimate the distance [27]. The range estimation

technique in [21] does not need to maintain accurate clocks, but it does require a post synchronization stage [28] to

achieve calibration and reduce estimation errors. In [19], the distance is estimated by measuring the received signal

strength. Though received signal strength methods tend to give biased answers, the sensor can utilize channel models

to optimize the overall system performance and the method can reduce the average range error significantly. [29]

proposes the radio interferometric positioning system (RIPS), which exploits interfering radio waves emitted from two

locations at slightly different frequencies and uses the relative phase offset of the signal at the receivers to obtain the

necessary ranging information for localization. However, an external synchronization strategy is necessary to align the

start of the transmission and reception at multiple sensors.

On the other hand, bidirectional communication ranging [30]-[34] provides an opportunity to invoke a calibration

step (e.g. timing calibration) and employ techniques to adjust the variations in transceiver characteristics (e.g. correct

latencies induced by system components) within the estimation procedures. That is, pairs of sensors can determine dis-

tances through bidirectional communication and information sharing to improve ranging accuracy in a low-precision

environment without synchronous clocking. A spread spectrum method for direct sequence ranging systems using

two-way measurements is given in [30]. This operates by counting the number of chips offset between the local and

received code sequences. This limits the range resolution to a chip period and a distance measurement is accurate

to within a time span of 1/2 chip, which means the higher chip rate (i.e. the higher timing resolution), the higher

range-measurement accuracy. [33] uses a handshaking protocol to measure the round-trip travel time (RTT). When
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wishing to update its position, a sensor transmits a direct-sequence request-to-send (RTS) waveform. Neighboring

sensors which hear the RTS respond simultaneously with acknowledgement (ACK) direct-sequence waveforms. Then

the initialing sensor estimates the TOAs of all signals from neighboring sensors to measure the distances. How-

ever, the performance may be limited by multiple access interference (MAI) in CDMA systems. In order to solve

the MAI problem, [34] presents channel estimation and distributed algorithms for localization in a wireless ad hoc

network. A direct-sequence CDMA-based handshaking protocol and the generalized successive interference cancel-

lation/matching pursuits (GSIC/MP) algorithm are used to obtain RTT and AOA measurements for the geolocation

problem in the multiuser environment.

3 Direct Distance Estimation

The most straightforward method of estimating the distance between sensors directly measures the time required for

a signal to propagate between the sensors. For low-powered sensors where the communication range is limited to a

few hundred meters, the distance must be estimated to sub-meter accuracy. When transmitting with electromagnetic

signals, one meter of distance corresponds to a time delay of approximately3ns. This requires extremely accurate

clocks that are precisely synchronized. Such clocks may be more expensive than desired in the network application.

3.1 Distance Estimation via Asynchronous Clocks (DEVAC)

The DEVAC method helps to alleviate the need for highly accurate synchronous clocking. Suppose that sensors A and

B are equipped with clocks (oscillators) that are assumed to be asynchronous in both frequency and phase. Denote

tai andtbj as the time stamps in sensors A and B, respectively; lettadel andtbdel be the delay time in sensors A and B,

respectively;tab is the signal propagation time. The estimation proceeds as shown in Figure 1:

a. Sensor A transmits a message containing the timeta0 (the time indicated on its clock at the start of the transmis-

sion).

b. Sensor B receives the first message at timetb2 (which istab seconds after it is transmitted).

c. Sensor A transmits a second message containing the timeta1 (the time indicated on its clock at the start of the

second transmission).

d. Sensor B receives the second message at timetb3 (which is alsotab seconds after it is transmitted).
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e. Sensor B calibrates its clock to A’s using the differencesta1 − ta0 (which is known from A’s message) andtb3− tb2

(the arrival times).

f. Some timetdel later, sensor B transmits the timetadel = z · tbdel that has elapsed since reception of A’s message

along with the time stamptb4 (the time on B’s clock when it transmits). These times are adjusted (if necessary)

using the scale factorz = ta
1−ta

0
tb
3−tb

2
.

g. Sensor A receives the reply when its clock readsta5 . The transmission timetab can be calculated as

tab =
ta5 − ta1 − tadel

2
.

Though this method shows that time delay estimation is possible without synchronous clocking, it suffers from the

drawback that the clocks must be very accurate, able to measure time differences in the nanosecond range.

3.2 Analysis of the DEVAC Method

This section analyzes the accuracy of the distance measurement as a function of the accuracy of the clock by deriving

an approximate distribution for the estimation based on the DEVAC method of Figure 1. The random variableT

represents the sensor estimate of the truet; thusTab is an estimate of the true timetab andT a
i is the estimate of the

time tai as measured by the clock of sensor A. The estimated transmission time is

Tab =
T a

5 − T a
del − T a

1

2
. (1)

Since sensor B calibrates its clock to A’s using time differences,

T a
del = Z · T b

del, (2)

where

T b
del = T b

4 − T b
3 , (3)

Z =
T a

1 − T a
0

T b
3 − T b

2

(4)

is a scale factor that represents how much faster or slower clock A moves than clock B.

For the purpose of analysis, assume that all measurementsT a
i andT b

j are independent normal random variables

with the same varianceσ2 caused by the measurement error in the clock:

T a
i ∼ N(tai , σ2) for i = 0, 1, 5. (5)
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T b
j ∼ N(tbj , σ

2) for j = 2, 3, 4. (6)

This normality assumption is justified in [27] when the clock skew is small.

Hence the random variableZ is the ratio of two normal random variables. As shown in [35] and [36], under

reasonable conditions on the distributions,Z is well approximated by

Z ∼ N(µZ , σ2
Z) (7)

with

µZ =
µ1

µ2

and

σ2
Z =

2σ2

µ2
2

(
1 +

(
µ1

µ2

)2
)

,

whereµ1 = ta1 − ta0 andµ2 = tb3 − tb2. For this Gaussian approximation to hold,µ2 must be biased away from zero

and the ratioµ2/σ2 must be large. These are reasonable assumptions in the sensor communication application.

From (2) and (7),T a
del can be viewed as the product of two normal random variables. Since the measurement errors

are small, [37] shows that the distribution ofT a
del can be sensibly approximated by

T a
del ∼ N

(
µZtbdel, 2µ2

Zσ2 + tbdel

2
σ2

Z

)
(8)

whenµZ/σZ andµT b
del

/σT b
del

are large, which is a reasonable assumption in this case.

Using the above analysis and referring to (1), the distribution ofTab is

Tab ∼ N
(
µTab

, σ2
Tab

)
, (9)

where

µTab
=

1
2
(ta5 − µZtbdel − ta1)

and

σ2
Tab

=
1
4

[
(2 + 2µ2

Z)σ2 + tbdel

2
σ2

Z

]
.

Note that the mean of random variableTab is the true value of the transmission time between sensors A and B and

the variance ofTab depends on the variance of the timing measurementσ2, the characteristic of the clock-adjustment

factor (4), and the time delaytbdel.
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Finally, the distribution of the distance measurementDab is given by

Dab ∼ N
(
cµTab

, c2σ2
Tab

)
(10)

since the transmission distance is the product of the transmission speedc and the transmission time. Observe that

the mean of random variableDab is the true value of the distance, showing that the estimator is unbiased. Numerical

results are presented in Section 6.1.

Results from [38]-[40] relate the accuracy of synchronous distance estimates to the signal-to-noise ratio (SNR) and

the effective bandwidth of the signal. The expression in (10) is the added inaccuracy due to the asynchronous clocking

mechanism. Equation (10) shows the distribution of the distance estimates when using a single transmitted pulse. One

way to increase the clock accuracy is to usek different estimates. If they are independent, the resulting estimation is

then

D̂ab ∼ N

(
cµTab

,
c2σ2

Tab

k

)
. (11)

4 Using Phase Shift to Measure Distance

Though the DEVAC method does not require synchronous clocks, it does require highly precise time stamps. The

following methods, Distance Estimation via Asynchronous Phase Shift 1 and 2 (DEVAPS1 and DEVAPS2), relax this

by using the phase of a carrier signal in a bidirectional communication aimed at estimating the distance.

4.1 Distance Estimation via Asynchronous Phase Shift (DEVAPS)

Suppose that sensors A and B are equipped with transmitters that operate at the same nominal carrier frequency.

Suppose also that they contain a method of determining the phase difference between the carrier of the received signal

and the internal reference oscillator. For example, this may be a phase-locked loop [41] or a Costas loop [42], or it

may be some more complex system (e.g. maximum likelihood, ML) capable of estimating the phase and frequency

offsets [43]. In the case of a software-defined radio [44], the speed of estimation may be traded-off against the required

computations. There is also a power trade-off since faster estimation means that the signal may be transmitted for a

shorter time.

The time delay estimation procedure of the DEVAPS1 method is shown diagrammatically in Figure 2, where time

is designated in terms of the phase of the carrier signal. This method does not require that the oscillators at sensors
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A and B have exactly the same frequency. The heart of the method is that sensor B can modify the frequency of its

carrier (and use this modified frequency for subsequent transmission) to match the actual frequencyf of the oscillator

at sensor A. On the other hand, the best B can do is to estimatef . Any errors in this estimation will cause errors in the

ultimate estimate oftab. For example, the error that will accrue in the phase over the timetdel (i.e., the time after the

reception from A ceases and before the transmission from B begins) is directly proportional to the number of cycles

in tab times the error in frequency. It is important, therefore, to keep this time short.

This method can only estimate the phase difference up to a multiple of2π. This results in an ambiguous distance

measurementctab + nλ wherec is the speed of signal propagation,λ the wavelength of the carrier wave, andn an

arbitrary integer. For example, with a carrier frequencyf = 100 MHz andc the speed of light, the wavelengthλ is

about 3 meters. The sensors may be 10 meters apart, 13 meters apart, or10 + 3n for any integern. This is shown in

the top line of Figure 3.

The following methods can be used to remove the ambiguity from the distance estimates:

1. The procedure of Figure 2 can be repeated using a different carrier frequencyf2, wheref and f2 are not

commensurable (Two nonzero real numbersn andmare said to be commensurable ifn/m is a rational number.).

The distance can then be estimated by combining the two measurements into a single (relatively) unambiguous

estimate of the distance. This is shown in Figure 3, where the arrow points to the region where the distance most

likely lies. Observe that lower frequencies, which have longer wavelengths, may be preferred.

2. The received signal strength can be used to obtain a rough estimate of the distance, which can be used to

eliminate the bulk of the ambiguity. This is discussed further in Section 6.1.

3. Network information can be used to avoid ambiguity. For instance, estimations from multiple pairs of sensors

can be combined to give better estimates.

If the sensors are capable of transmitting and receiving at the same time (presumably on a different carrier fre-

quencyf2), then errors due to the phase drift duringtdel can be eliminated. This “full-duplex” version of the DEVAPS

method, DEVAPS2, is shown in Figure 4.

a. Sensor A transmits a carrier signal at frequencyf1, cos(2πf1t + φa), whereφa is a known reference phase.

(Again,φa = 0 is the simplest choice.)

b. Sensor B receives the signal, ascos(2πf1t + φa + 2πf1tab).

8



c. Sensor B phase locks its local oscillator to the received signal or estimates the phaseφa+2πf1tab and frequency

f1 of the received signal. (This may be done using a PLL, a Costas loop, a ML estimator, or any other appropriate

method.)

d. Sensor B generates a new carrier atf2 that is mode locked tof1. (This is feasible whenf2 = n
mf1 for small

integersn andm.) B then transmits a signal with carrierf2. The transmitted signal iscos(2πf2t + n
m (φa +

2πf1tab)).

e. Sensor A receives the signal ascos(2πf2t + n
m (φa + 2πf1tab) + 2πf2tab).

f. Sensor A uses a phase (and frequency) matching algorithm to measure the phase difference, which is2π n
mf1tab+

2πf2tab. Sincen,m, f1 andf2 are known, sensor A can computetab and hence the distanced.

The (second) carrier at frequencyf2 must be simply related tof1 so that B’s oscillator can lock to the receivedf1

and easily generate a mode locked version off2. The mode locking of oscillators is discussed at length in [45].

As with the DEVAPS1 method, the DEVAPS2 method returns ambiguous estimates which must be disambiguated

using one of the strategies outlined above. The use of two mode-locked frequencies in the DEVAPS2 method is

very different from (and not a substitute for) the use of two incommensurable frequencies in the disambiguation

process. The primary advantage of the DEVAPS2 method is that it reduces the error in the frequency estimation to

(approximately) zero. Thus, it gives more accurate distance estimations. On the other hand, more complex circuitry is

required in the sensor since it must be capable of receiving and transmitting simultaneously.

4.2 Analysis of the DEVAPS2 Method Using a ML Estimator

There are several methods for estimating the frequency and phase of a sinusoidal signal observed in additive white

Gaussian noise. This analysis adopts an approximate maximum likelihood (ML) estimator as detailed below to de-

scribe the performance of the distance measurement using the DEVAPS2 method and assumes that the oscillator noise

is small. A discussion of the effects of oscillator noise may be found in [46]-[50].

The frequencyf0 and phaseφ of a sinusoidal signal embedded in white Gaussian noise can be estimated using the

data set

x[n] = cos(2πf0n + φ) + w[n] n = 0, 1, 2, . . . , N − 1, (12)

where0 < f0 < 1
2fs, fs is the sampling frequency, andw[n] ∼ N(0, σ2

n). Denotingx = [x[0], x[1], . . . , x[N − 1]]T
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andθ = [f0, φ]T , the likelihood function is

p(x|θ) =
1

(2πσ2
n)

N
2

exp

[
− 1

2σ2
n

N−1∑
n=0

(x[n]− cos(2πf0n + φ))2
]

. (13)

Thus, the maximum likelihood problem for estimatingθ becomes

minimize
N−1∑
n=0

(x[n]− cos(2πf0n + φ))2 (14)

subject to 0 < f0 <
1
2
fs. (15)

In [51], an approximate ML estimator ofθ is given by

f̂0 = arg max
f

1
N

∣∣∣∣∣
N−1∑
n=0

x[n] exp(−j2πfn)

∣∣∣∣∣

2

(16)

φ̂ = arctan
−∑N−1

n=0 x[n] sin 2πf̂0n∑N−1
n=0 x[n] cos 2πf̂0n

(17)

with

σ2
f̂0

≥ 3
π2γN(N2 − 1)

(18)

σ2
φ̂

≥ 2(2N − 1)
γN(N + 1)

, (19)

whereγ is the SNR (1/2σ2
n). For a large data set, the ML estimator is asymptotically efficient and optimal since it is

asymptotically unbiased and achieves the Cramer-Rao lower bound.

Assume that sensor A transmits a sinusoidal signalcos(2πf1t + φa1). Sensor B receives A’s message embedded

in white Gaussian noise and applies a ML estimator to determine the frequency and phase of the received signal,f̂1

andφ̂b, whereφ̂b = φa1 + 2πf1tab +4φb andf̂1 = f1 +4f1, where4φb and4f1 are estimation errors. On the

basis of this frequency estimation̂f1, sensor B generates a new frequencyf
′
2 = n

m f̂1 and transmitscos(2πf
′
2t+ n

m φ̂b)

to sensor A. After receiving the signal ascos(2πf
′
2t + n

m φ̂b + 2πf
′
2tab) with noise, sensor A applies a ML estimator

to match the phase and frequency. This yields

φ̂a2 =
n

m
φ̂b + 2πf

′
2tab +4φa2 , (20)

where4φa2 is the phase measurement error.

Using the DEVAPS2 method and assumingφa = 0, the phase difference is

φ̂a2 = 2π
n

m
f1Tab + 2πf2Tab, (21)
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whereTab is the estimate of transmission time. Hence,

Tab =
m

4πnf1
φ̂a2 (22)

= tab +
m

4πnf1

[
2π

n

m
4f1tab +

n

m
4φb +4φa2

]
. (23)

From the asymptotic normality theorem [52], the distribution ofTab can be approximated by

Tab ∼ N(µTab
, σ2

Tab
) (24)

with

µTab
= tab

and

σ2
Tab

=
1

(4πf1)2γN(N + 1)

[
2(2N − 1)(1 + (

m

n
)2) +

24t2ab

N − 1
− 12tab

]
,

whereγ is the SNR andN is the number of samples of the received signal. The variance ofTab depends on the carrier

frequencyf1, the SNR, the number of samplesN of the received signal, the ration/m, and the real transmission

time tab. Note that the approximation in (24) using the asymptotic normality theorem assumes the best possible

performance of the frequency and phase estimator, which is an optimal characterization ofTab.

Thus, the distribution of the estimated distance usingf1 with wavelengthλ1 is

Df1 ∼ N(cµTab
+ lλ1, c

2σ2
Tab

) (25)

and the distribution of the estimated distance usingf2 with wavelengthλ2 is

Df2 ∼ N(cµTab
+ lλ2, c

2σ2
Tab

). (26)

The distance can then be estimated by combining the two measurements into a single (relatively unambiguous) esti-

mate of the distance. From (25) and (26), observe that for a large data set, this estimator is asymptotically unbiased.

4.3 Analysis of the Phase Error with a Phase-Locked Loop

This subsection analyzes the accuracy of distance measurement in the DEVAPS2 method using a phase-locked loop. A

block diagram of the device is shown in Figure 5. A transmitted oscillation is characterized byA sin(ωt+θ+ψtx(t)),

which is a pure sinusoid with constant frequencyω, initial phaseθ, and frequency fluctuationψtx(t). Thus, the input

signal may be represented by
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A sin(ωt + θ + ψtx(t)) = A sin(ω0t + θ0(t) + ψtx(t))

= A sin(ω0t + θ1(t)),

whereθ0(t) = (ω − ω0)t + θ, θ1(t) = θ0(t) + ψtx(t), (ω − ω0) is the difference between the transmitter oscillator

frequencyω and the voltage control oscillator (VCO) frequencyω0, andψtx(t) is the frequency instabilities of the

transmitter oscillator [49]. The phase of the noisy VCO is

θ2(t) = θvco(t) + ψvco(t), (27)

where

d

dt
θvco(t) = Ke(t), (28)

e(t) is the VCO input voltage andψvco(t) is the short-term instabilities of the VCO oscillator [49].

We define the total phase error byφ(t) = θ1(t) − θ2(t), which is the instantaneous phase error of the VCO with

respect to the received signal. [53] shows that the steady-state phase-error distribution for the first-order loop (F (s) =

1) can be obtained by solving the Fokker-Planck equation in the region−π ≤ φ ≤ π with appropriate boundary

conditions. Here the system analysis can be generalized considering the frequency instabilities of the transmitter

oscillator and VCO. The generalized result of the steady-state distribution is given by

P (φ) = c1 exp(α cos φ + βφ)[1 + c2

∫ φ

−π

exp(−α cosx + βx) dx] (29)

with the boundary condition

P (π) = P (−π) (30)

and the normalizing condition ∫ π

−π

P (φ) dφ = 1, (31)

where

α =
4A

KN0
, (32)

β =
4(ω − ω0 + ∆ψ̇(t))

K2N0
, (33)

∆ψ̇(t) = ψ̇tx(t)− ψ̇vco(t) (34)
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c2 =
exp(−2βπ)− 1∫ π

−π
exp(−α cos x + βx) dx

(35)

from the boundary condition (30), and thenc1 can be obtained by means of (31).

For the general case (i.e. when the VCO quiescent frequency is not tuned to the frequency of the transmitted signal

or the difference in the frequency instabilities of the transmitter oscillator and the VCO is not negligible), (29), (31),

and (30) represent the entire steady-state phase-error probability density. In order to simplify the analysis, consider

the special case which assumes that the frequency offset between the transmitted signal and VCO is zero (ω = ω0)

and the frequency instabilities of the transmitted oscillation and VCO is very small (∆ψ̇(t) ' 0). Therefore,

P (φ) =
exp(α cos φ)

2πI0(α)
− π ≤ φ ≤ π (36)

with variance

σ2
φ =

π2

3
+ 4

∞∑
n=1

(−1)nIn(α)
n2I0(α)

. (37)

Whenα is large (α > 4), the linear model without signal modulation can be used to approximate the variance of

phase error for the first-order loop withω = ω0. Hence, the variance of phase error is

σ2
φ =

N0(AK/4)
A2

=
N0BL

A2
=

1
SNR

=
1
α

, (38)

whereBL = AK/4 is the defined loop bandwidth of the first-order filter andα is the SNR.

Sensor A then uses a first-order PLL to measure the phase of the received signal and obtain the phase difference.

Following the procedures in the DEVAPS2 method and assuming that the frequency estimation error is negligible, the

phase difference is

φ
(a)
PLL =

n

m
(2πf1tab +4φb) + 2π

n

m
f1tab +4φa, (39)

where4φa and4φb are the phase errors in sensor A and sensor B, respectively. Therefore, the estimate of transmis-

sion timeTab yields

Tab =
m

4πnf1
φ

(a)
PLL (40)

= tab +
1

4πf1
(4φb +

m

n
4φa). (41)

When the SNR is large, (36) is very close to a Gaussian distribution. Hence, the distribution ofTab can be

approximated by

Tab ∼ N(µTab
, σ2

Tab
) (42)
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with

µ = tab

σ2
Tab

=
n2 + m2

α(4πnf1)2
.

Therefore, the distribution of distance measurement can be described as in (25) and (26).

5 DEVAC vs. DEVAPS: the Trade-offs

Since multiple estimates using the DEVAC method consume the same energy as a single estimate using the DEVAPS

method, the accuracy of these two methods can be easily compared.

5.1 Energy Consumption

Assume the transmission path is symmetric and the radio dissipatesEelec in the transmitter or receiver circuitry and

Epro in the information processing.

Based on the estimation procedures in the DEVAC method, the radio expends:

E(DEVAC) = 3E
(Tx)
elec(DEVAC) + 3E

(Rx)
elec(DEVAC) + 2Epro(DEVAC) (43)

= 6Eelec(DEVAC) + 2Epro(DEVAC), (44)

whereE
(Tx)
elec(DEVAC) = E

(Rx)
elec(DEVAC) = Eelec(DEVAC) and2Epro(DEVAC) are consumed by the clock calibration and

propagation time calculation.

For the DEVAPS method, the radio expends:

E(DEVAPS) = 2E
(Tx)
elec(DEVAPS) + 2E

(Rx)
elec(DEVAPS) + 2Epro(DEVAPS) (45)

= 4Eelec(DEVAPS) + 2Epro(DEVAPS), (46)

whereE
(Tx)
elec(DEVAPS) = E

(Rx)
elec(DEVAPS) = Eelec(DEVAPS) and2Epro(DEVAPS) are consumed by a PLL or MLE to abstract

the phase and frequency information.

Since computation is much cheaper than communication, we have

Epro(DEVAC) = i · Eelec(DEVAC) (47)

Epro(DEVAPS) = j · Eelec(DEVAPS), (48)
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wherei andj are ratios of the processing energy consumption to the energy consumption for running the circuitry in

respective methods and0 < i, j < 1.

For a given energy and from (43) and (45), the relationship betweenEelec(DEVAC) with k estimates andEelec(DEVAPS)

with a single estimate is

Eelec(DEVAC) =
4 + 2j

(6 + 2i)k
· Eelec(DEVAPS), (49)

which implies

SNR(DEVAC) =
4 + 2j

(6 + 2i)k
· SNR(DEVAPS), (50)

where the SNRs represent the signal-to-noise ratios for the respective methods. Therefore, in order to achieve an

acceptable SNR,η, the threshold of the number of estimatesk in the DEVAC method is given by

k ≤ (4 + 2j)
(6 + 2i)

· SNR(DEVAPS)

η
. (51)

5.2 Estimation Accuracy

For the DEVAC method, the fundamental limitation on the accuracy of the estimates is related to the form of the signal

and the clock, including the signal bandwidth, the signal-to-noise ratio (SNR), and the timing calibration. Assume

that the random range error and range bias error from propagation conditions are small and negligible. The range-

measurement accuracy may be characterized by the measurement error,σR, given by the root-sum-square of the error

components.

σR =
(
σ2

S + σ2
clock

)1/2
, (52)

whereσS is the SNR-dependent random range measurement error, which is

σS =
c

2βe

√
2SNR

, (53)

whereβe is the effective bandwidth of the signal [40], andσclock is the clock-dependent random range measurement

error, which iscσTab
.

With the finite energy constraint and referring to (50), the range-measurement accuracy of the DEVAC method
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usingk independent estimates is

σ
(k)
R =

[
1
k

(σ2
S + σ2

clock)
]1/2

(54)

=
[

1
k

(
c2

8β2
eSNR(DEVAC)

+ c2σ2
Tab

)]1/2

(55)

=

[
(6 + 2i)c2

8β2
e (4 + 2j)SNR(DEVAPS)

+
c2σ2

Tab

k

]1/2

, (56)

where0 < i, j < 1. Observe that if the signal bandwidth remains the same for all measurements using the DE-

VAC method, then the global SNR-dependent random range measurement error of the DEVAC method with multiple

measurements does not decrease due to the averaging (i.e. a scale factor1/
√

k) and a lower SNR (i.e. a larger corre-

sponding error
√

k · σS). This means theσS with one estimate applying the finite total energy is identical to theσS

with the energy constraint and multiple estimates. However, the clock-dependent random range measurement error

can be reduced by a scale factor1/
√

k while using multiple measurements because of the averaging.

On the other hand, the estimation accuracy of the DEVAPS method with the ML estimator relies on the number of

samples of the received signal, the SNR, and the carrier frequencies of the signals. The range-measurement accuracy

using phase shift information is derived as in (25). The above demonstrates the trade-offs between the accuracy of

the distance estimation and the complexity of the circuitry needed for implementation. Therefore, depending on the

range-measurement accuracy, these key parameters in each method can be chosen to achieve desired performance. A

numerical example of this analysis is illustrated in Section 6.1.

6 Performance Evaluation

This section demonstrates the performance of the various distance measurement methods. Assume that the propagation

time is tab = 10−7s (i.e. the true distance isd = 30 m) and with SNR = 3 dB for all distance measurement settings.

Note that these settings may represent a reasonable transmission range for many wireless sensor applications as in the

emerging ZigBee standard [54].

6.1 Numerical Results

The first set of numerical results evaluates the critical timing parameterstai andtbj in the DEVAC method to determine

the required level of timing resolution (i.e. the standard deviation of the time measurementσ). Figure 6 (left) shows
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the typical performances of time and distance measurement using (10) with the parameters detailed in the caption and

the clocks providing a resolution of 1 ns and 100 ns, respectively. Figure 6(a) and 6(b) show the distance as estimated

by a single pulse. As expected, a distance measurement with a higher timing resolution has a smaller measurement

variance. However, combining the estimates ofk pulses allows the less accurate clocking to achieve similar accuracy

to the faster clocks. For example, with the parameters as in Figure 6, it would require 10000 pulses for the 100 ns

clock to achieve the same estimation accuracy as the 1 ns clock. The DEVAC method illustrates the importance of

timing resolution for accurate distance estimation. The drawback is that a clock with high timing accuracy may be

expensive.

The second set of numerical results examines the performance of the DEVAPS2 method using phase information.

Given a carrier frequencyf1, a mode-locked frequencyf2(= n
mf1), and with other parameters as before, Figure 6

(right) shows the performance of the distance measurement using a ML estimator withN samples of the received signal

based on (25) and (26). The larger the data set, the smaller the measurement variance. Observe that the performance of

the distance measurement withN = 50 samples is comparable to the measurement withN = 500 samples, even for

low SNR. ThusN = 50 samples may be sufficient for the asymptotic properties to apply. In order to distinguish the

ambiguous estimates, Figure 6 also shows the disambiguation scheme in the DEVAPS2 method using two appropriate

transmitted frequencies (f1 = 50 MHz andf2 = 9
14f1). In this case, the correct answer is around 30 meters.

Instead of using a ML estimator, a phase-locked loop may be used to estimate the phase and frequency offsets.

The performance of a PLL is compared to that of a ML estimator based on (24) and (42) assuming that the frequency

offset4f is negligible and the SNR is large. As shown in Figure 7 (left), the variance of the phase error in the PLL

is larger than that of an asymptotically optimal ML estimator given a high SNR (SNR = 10 dB). Note that though the

ML estimator has better performance, the computational complexity of the ML estimator may limit its applicability.

The third set of numerical results depicts the trade-offs between the DEVAC and DEVAPS methods by the analysis

derived in Section 5. Assume the transmitted waveform of the DEVAC method is a simple rectangular pulse with a

zero phase characteristic.

a(t) = rect
(

t

tp

)
, (57)

wheretp is the pulse width. Thus, the effective bandwidthβe is

βe =
3

2tp
. (58)

Given the parameters detailed in the caption, Figure 8 shows the range-measurement accuracy of each method
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based on the same energy consumption. Observe that the distance measurement is refined and the clock skew problem

is alleviated by multiple estimates such that the performance of the DEVAC method is competitive with that of the DE-

VAPS method. However, equation (52) for estimation errors in the DEVAC method are derived using the assumption

of large SNR, which means there may exist a threshold for the number of estimatesk with finite energy constraint;

otherwise, equation (54) may result in a poor approximation for estimation error due to small SNR in each estimate.

The fourth set of numerical results examines the performance of the distance measurement using both the received

power method and the DEVAPS1 method. In this paper, the free space propagation model is used to predict received

signal strength when there exists a line-of-sight path between the transmitter and receiver.

Let the received power in sensor B be:

Prx =
KPtx

Dα
, (59)

whereD is the estimated distance,Ptx is the transmitted power,K is a constant related to the transmitter and receiver

antenna gains, the system loss factor and the radio wavelength, andα is the attenuation exponent. Due to the log-

normal shadowing effects [55],[56], the power measurementPrx is a log-normal random variable

fPrx ∼ N(P rx(dB), σ2
sh), (60)

with P rx(dB) = P tx(dB) − 10α log10(d), whereP rx(dB) andP tx(dB) are the decibel values of the mean received

power and the mean transmitted power in sensor B,d is the true distance between sensors A and B, andσ2
sh is the

variance of the log-normal shadowing.

From (59), the estimated distanceD can be expressed by

D = 10
Ptx(dB)−Prx(dB)+10 log10 K

10α (61)

and the distribution ofD is

fD ' fPrx ·
∣∣∣∣
dPrx(dB)

dD

∣∣∣∣ (62)

=
10α√

2πD ln 10σsh

exp

(
−

(
Ptx(dB)− 10α log10 D + 10 log10 K − P rx(dB)

)2

2σ2
sh

)
(63)

Figure 7 (right) shows the performance of the DEVAPS1 method and the distribution in (63) for a single noisy

measurement given the true distanced = 30 meters,Ptx(dB) = 2, P rx(dB) = −26.53, K = 1, α = 2, and

18



σ2
sh(dB)/α = 2 [14]. Note that the distributions are peaked away from the true values. Due to the received power

scaling, the addition of noise and the shadowing effects cause the estimate to be biased low. In practice, the receiver

noise may be large compared with the signal, and so the usefulness of the power method alone is doubtful. However,

the power method may be useful as a means of disambiguating the phase measurements for the DEVAPS methods. In

certain cases, the 2-ray ground reflection model [57] may be a useful propagation model considering both the direct

path and a ground reflection path between the transmitter and receiver. The performance of the power method applied

to the 2-ray ground reflection model is presented and discussed in [58].

The final set of numerical results examines the performance of the distance measurement using phase information

in different frequency bands (Figure 9). The purpose of this comparison is to find an appropriate frequency range

for DEVAPS1 and DEVAPS2. Consider the following frequency bands for ranging applications [59],[60]: (a) Audio

ranging systems: 50 Hz∼ 20 KHz; (b) Ultrasound ranging systems: 20 KHz∼ 200 KHz; (c) VHF: 30 MHz∼ 300

MHz; (d) Mobile radio systems: 890∼ 960 MHz and 1.85∼ 1.99 GHz. Notice that the ranging estimation using the

DEVAPS1 and DEVAPS2 methods may have a large estimation variance while operating in the frequency bands for

acoustic ranging systems (Figures 9(a) and 9(b)). On the other hand, when the DEVAPS1 and DEVAPS2 methods

are applied in the frequency band for mobile radio systems (Figure 9(d)), it would be difficult to distinguish the best

possible distance estimation because of the phase uncertainty and the very short wavelength. Thus, as shown in Figure

9(c), the VHF frequency band may be a good operating frequency range for distance measurement methods using

phase shift information.

6.2 Multipath Effects

Figure 10 illustrates the validation of the approximate Gaussian distributions via simulations. For the DEVAC method,

the SNR-dependent random range measurement error,σS , is assumed to be negligible (i.e the SNR is large). Therefore,

the clock-dependent random range measurement error,σclock, is investigated. For the DEVAPS method, a PLL is used

to estimate the phase and frequency offsets. Observe that if there are no other transmission paths besides the LOS path,

the theoretical results provide good approximations for the estimated distances. In order to investigate the contributions

of multipath to the distance estimations, the following two cases are examined. Note that the channel model is assumed

to be a time-invariant 2-ray ground reflection model [57] considering the LOS path with the attenuation factora1 and

time delayτ1 and a ground reflection path with the attenuation factora2 and time delayτ2. Assume that the time delay

between two paths is4τ = τ2 − τ1 = 36.5 ns.
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Suppose that the LOS path is the dominant path. Given the parameters of the channel propagation model, Figure

11 shows that the DEVAC method works fine in this environment, but the DEVAPS method using a PLL gives biased

estimations due to the corrupted phase measurements caused by multipath effects.

On the other hand, when the LOS path is significantly attenuated. Figure 11 shows that both methods give biased

estimates. These two experiments show that the DEVAC method remains unbiased even with modest multipath while

the DEVAPS method returns biased distance estimates when there is multipath interference. Therefore, compared

with the DEVAPS method, the DEVAC method may be a better choice for the ranging problem in an environment with

modest multipath interference.

7 Conclusion

This paper uses bidirectional signalling to bypass the need for accurate synchronous clocking and provides a detailed

mechanism and analysis for practical round-trip time-delay range measurements. In the DEVAC method, an algorithm

is proposed to estimate the frequency offset and propagation time, which is critical to accurate distance estimation.

In the DEVAPS method, several techniques are presented to remove ambiguity in distance measurements by using

different frequencies. Proper setup for the ranging problems using the DEVAC and DEVAPS methods is presented and

the measurement techniques are simulated and analyzed to assess the accuracy of the distance estimation. Depending

on the measurement accuracy, then the parameters in each technique can be determined to achieve desired performance.

There are several ways this work can be generalized. The DEVAPS methods require phase locking and estimating

the phase at the carrier frequencies. Many practical wireless systems, however, perform the bulk of their signal

processing at anintermediate frequency(IF) which is generated by mixing the received signal with a local oscillator.

This ranging problem using IF signals can be solved by modifying the DEVAPS method as detailed in [58].

This paper assumes that there only exists a LOS transmission path between the sensors. In many applications

it may be necessary to account for multipath interference in the transmission path. The simulations imply that the

DEVAC method remains unbiased with a modest amount of multipath interference and the DEVAPS method becomes

biased due to the corrupted phase measurements in multipath environments. The impact of multipath interference on

the system performance is investigated further in [58] which considers bi-directional communication utilizing channel

estimation and Tomlinson-Harashima (TH) precoding [61] for distance measurement in static multipath channels.
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When B replies using carrierf2 (wheref1 andf2 are mode locked), A can lock to B’s phase. A then calculates the

phase difference and estimates the distance between A and B.

Figure 5: System model of the phase-locked loop.
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Figure 6: The distribution of distance measurement using the DEVAC Method with a timing resolution of (a) 100ns

and (b) 1ns: tab = 10−7, tb4 = 3, tb3 = 2, tb2 = 1.25, ta1 = 0.75, andta0 = 0.25 (left). The relative pdf of the distance

measurement using the DEVAPS2 Method with a ML estimator applied to two different data record lengths,N = 50

(larger variance) andN = 500 (smaller variance) to estimate the phase at the transmission frequency (c)f1 = 50 MHz

and (d)f2 = 9
14f1.
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Figure 7: A comparison of the distance measurement using the DEVAPS2 Method with a ML estimator and a PLL

(left). The right hand figures show the performance of distance measurement using both the DEVAPS1 method and

the power method.
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Figure 8: The range-measurement accuracy of the DEVAC and DEVAPS methods based on the same energy consump-

tion with SNR(DEVAPS) = 20 dB, j = 0.2, N = 50, carrier frequenciesf1 = 50 MHz, andf2 = 9
14f1 MHz for the

DEVAPS method with a MLE and the pulse widthtp = 10 ns, the clock timing accuracyσ = 10 ns, andi = 0.1 for

the DEVAC method with varying the number of estimatesk = 1, 10, and 100.
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Figure 9: The figures show the relative pdf of the distance measurement using phase information with a ML estimator

applying a data record lengthN = 50 to estimate the distance at different frequency bands. The right bottom figure

(d) shows an ambiguous distance measurementctab + lλ with −10 ≤ l ≤ 10.
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Figure 10: The theoretical and simulation results (1000 typical runs) using the DEVAC method with a timing resolution

of 1ns: tab = 10−7, tb4 = 3, tb3 = 2, tb2 = 1.25, ta1 = 0.75, andta0 = 0.25 and the relative pdf of the range measurement

using the DEVAPS method with a PLL (SNR = 10 dB) to estimate the phase at the transmission frequencyf1 = 50

MHz andf2 = 9
14f1. The clock skew and channel noise are assumed to be normal random variables with zero means

and the standard deviations10−9 and10−2, respectively.
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Figure 11: The figures show the relative pdf of the distance measurement in multipath environments via simulations.

Case 1 (Dominated by the LOS path):a1 = 0.8, a2 = 0.2, τ1 = 0, andτ2 = 36.5 ns; Case 2 (Dominated by the

ground reflection path):a1 = 0.2, a2 = 0.8, τ1 = 0, andτ2 = 36.5 ns.

30


