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The Spectral Toolbox is a suite of analysis-resynthesis programs that locate 

relevant partials of a sound and allow them to be resynthesized at any specified 

frequencies. This enables a variety of routines including spectral mappings (sending 

all partials of a sound to fixed destinations), spectral morphing (continuously 

interpolating between the partials of a source sound and a destination) and Dynamic 

Tonality (a way of organizing the relationship between a family of tunings and a set 

of related timbres). A complete application called the TransFormSynth concretely 

demonstrates the methods using either a one-dimensional controller such as a midi 

keyboard or a two-dimensional control surface (such as a MIDI guitar, a computer 

keyboard, or the forthcoming Thummer controller). 
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Introduction 

Wendy Carlos looked forward to the day when it would be possible to perform 

any sound in any tuning: ―...not only can we have any possible timbre but these can 

be played in any possible tuning... that might tickle our ears‖ (Carlos 1987b). The 

Spectral Toolbox and the TransFormSynth address two issues that have hindered the 

realization of this goal: the ability to specify and implement detailed control over the 

timbre/spectrum of the sound, and a way to organize the presentation and physical 

interface of the infinitely many possible tunings. 

The analysis-resynthesis process at the heart of the Spectral Toolbox is a 

descendent of the Phase Vocoder (PV) (Dolson 1986; Moorer 1973). But where the 

PV is generally useful for time-stretching (and transposition after a resampling 

operation), the spectral resynthesis routine SpT.ReSynthesis allows arbitrarily 

specified manipulations of the spectrum. This is closely related to the spectral 

mapping technique of Sethares (1998 and 1997) but can function continuously (over 

time) rather than being restricted to a single slice of time. In the simplest application 

SpT.Sieve, the partials of a sound (or a performance) can be remapped to a fixed 

template; for example, the partials of a cymbal can be made harmonic, or all partials 

of a piano performance can be mapped to the scale steps of N-tone equal 

temperament. By specifying the rate at which the partials may change, the spectrum 

of a source sound can be transformed into the spectrum of a chosen destination 

sound, as demonstrated in the routine SpT.MorphOnBang. Neither the source nor the 

destination need be fixed. The mapping can be dynamically specified so that a 

source with partials at frequencies  is mapped to 

. For example, the SpT.Ntet routine can be used to generate sounds 

with spectra that align with scale steps of the N-tone equal tempered scale. 

Carlos (1987a) observed that ―the timbre of an instrument strongly affects what 

tuning and scale sound best on that instrument.‖ The most complex of the routines, 
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the TransFormSynth, allows the timbre and the tuning to be coupled (or not) by the 

positioning of a two-dimensional slider (e.g., a joystick) where one dimension 

controls the amount of tempering of the tuning and the other dimension controls the 

amount of tempering of the timbre. The organization of the tunings builds on the 

invariance ideas of Milne, Sethares, and Plamondon (2007) and (2008) where 

keyboard layouts can be transpositionally invariant (all keys are fingered the same) 

as well as tuning invariant (analogous chordal and melodic forms are fingered the 

same) throughout all tunings in a continuum. This provides a straightforward 

interface for user control and a tight integration over a large range of tunings and 

timbres. The synthesis, based on existing samples, provides a rich variety of sounds. 

A current version of the Spectral Toolbox (including all the routines mentioned above) 

can be downloaded from the Spectral Tools Homepage at 

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html. It runs on Windows and 

Mac OS using either Max/MSP (Cycling ‘74) or the free runtime version. The 

spectral manipulation routines are written in Java, and all programs and source code 

are released under the Creative Commons license. 

Analysis-Resynthesis 

In order to individually manipulate the partials of a sound, it is necessary to 

locate them. The Spectral Toolbox begins by separating the signal (the most 

prominent tonal material) from the noise (rapid transients or other components that 

are distributed over a wide range of frequencies). This allows the peaks to be treated 

differently from the noise and the basic flow of information in all of the routines is 

shown in Figure 1. This separation helps preserve the integrity of the tonal material 

and helps preserve valuable impulsive information such as the attacks of notes that 

otherwise may be lost due to smearing (Serra 1994). 

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
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The median of a set of numbers is the value that separates the larger half from the 

lower half; the median filter of length  takes the median of each successive set of  

values. The noise floor is approximated as the output of a median filter applied to 

the magnitude spectrum. Since peaks are rarely more than a handful of frequency 

bins wide, a median filter with length between  to  allows good 

rejection of the highs as well as good rejection of the nulls. For example, the left 

hand plot in Figure 2 shows the spectrum in a single 4096-sample frame from 

Joplin‘s Maple Leaf Rag. The median filter, of length 35, provides a convincing 

approximation to the noise floor. 

Figure 1. The input sound is broken into frames and then analyzed by a series of overlapping FFTs. 

The partials (the peaks of the spectrum) follow the top path; they are mapped to their destination 

frequencies, then optionally processed in the frequency domain. Similarly, the noise portion follows 

the bottom path and may be processed in the frequency domain before summing and returning to the 

time domain. 
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For example, SpT.AnalySynth, whose help file is shown in Figure 3, can be used 

to demonstrate the separation of signal and noise. A sound file is chosen by clicking 

on the ―open‖ box; alternatively, it is possible to use a live audio input. Pressing the 

x begins play and displays the magnitudes of the signal and the noise (the scales are 

controlled by several boxes that are not shown in the Figure 3). When the ―% noise‖ 

parameter is set to 0.5, the signal and noise are balanced and the output 

resynthesizes the input. With ―% noise‖ set to zero, the output consists of only the 

signal path. When it is set to 1.0, the output consists of only the noise path. 

Experimenting with different values of the ―threshold multiplier‖ (which multiplies 

the noise floor by this factor) and the ―maximum # peaks‖ parameter affects how 

well the noise-signal separation is accomplished. For example, applying the values 

shown in the figure to a version of Scott Joplin‘s Maple Leaf Rag gives the Noisy Leaf 

Figure 2. A typical spectrum and the noise floor (the dark line) as calculated using the output of the 

median filter (multiplied by a constant). The noise floor is used to distinguish the peaks of the 

spectrum: the M largest local maxima above the noise floor (shown by the small circles) are treated as 

significant partials and processed through the top path of Fig. 1; data below the noise floor is 

processed through the bottom path. 



 

Sethares, Milne, Tiedje, Prechtl, Plamondon  6 

 

Computer Music Journal   

Rag (Spectral Tools Homepage), where both melody and harmony are removed, 

leaving only the underlying rhythmic pattern. 

One problem with standard short-time Fourier transform processing is that the 

frequencies specified by the fast Fourier transform (FFT) are quantized to  where  

is the sampling rate and  is the size of the FFT window. The phase values from 

consecutive FFT frames can be used to refine the frequency estimates of the partials 

as is often done in the PV (Laroche and Dolson 1999; Moorer 1973).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose that two consecutive frames  and  separated by  seconds have a 

common peak in the th frequency bin of the magnitude spectrum (corresponding to 

a raw frequency estimate of  ). Let  and  be the phase values of the th bins 

and define . The refined frequency estimate is 

Figure 3. SpT.AnalySynth demonstrates the decomposition of the magnitude spectrum into signal (the 

top plot) and noise (the bottom plot). Parameters that affect the decomposition appear across the top. 

The proportion of signal to noise in the reconstructed signal can be adjusted by changing the “% 

noise” parameter. 

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
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 (1) 

The accuracy of this estimate has been shown to approach that of a maximum 

likelihood estimate (the value of the frequency  that maximizes the conditional 

probability of  given the data) for some choices of parameters (Puckette 1998). In 

practice, the frequency values reported are significantly more accurate than the raw 

frequency estimates. 

Similarly, in the resynthesis step, the destination frequencies for the partials can 

be specified to a much greater accuracy than  by adjusting the frequencies of the 

partials using phase differences in successive frames. To be explicit, suppose that the 

frequency  is to be mapped to some value . Let  be the closest frequency bin in 

the FFT vector (i.e., the integer  that minimizes ). The th bin of the output 

spectrum at time  has magnitude equal to the magnitude of the th bin of the 

input spectrum with corresponding phase 

 (2) 

Spectral Mappings 

Suppose that a source sound  has  partials  with magnitudes 

, and let  be  desired partials of the destination sound . 

The mapping changes the partials‘ frequencies while preserving their magnitudes. 

Phase values then are created as in Equation 2. A key issue is how to assign the 

input frequencies  to the output frequencies . Two methods that we have found 

useful are shown schematically in Figure 4. In each diagram, there are two sets of 

stacked lines that represent the peaks in the magnitude spectra of the source  (on 

the left) and the destination  (on the right). The arrows show how the assignments 

are made (and hence which partials of the source map to which partials of the 

destination). The dark dots represent frequencies that are not in  or  but are 

nonetheless needed when . 
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Multiphonics occur in wind instruments when the coupling between the driver 

(the reed or lips) and the resonant tube evokes more than a single fundamental 

frequency. Their sounds tend to be inharmonic and spectrally rich. The two different 

assignment strategies, described in Figure 4, are contrasted by conducting a spectral 

morph (see ―Spectral Morphing‖, below) between pairs of clarinet multiphonics . 

Figure 4. Two ways to align the partials of the source spectrum with the partials of the destination 

spectrum. The nearest neighbor assignment locates  that are close to , and these neighbors are 

paired. Zero amplitude partials are added to the list of destination partials and assigned to  

whenever there are no nearby partials , and these are spaced between the nearest destination 

partials. Similarly, unassigned destination partials are mapped to partials of zero magnitude that are 

located midway between nearby source partials. The sequential alignment method assigns the lowest 

frequency peak in  to the lowest frequency peak in , then pairs the next-lowest frequencies, and so 

forth, until all are exhausted. 
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Each of the sound examples in Multiphonics1-2-3-4 (Spectral Tools Homepage) 

presents two different multiphonics and then a 15 second morph between them. The 

various assignment strategies can cause significant differences in the motion of the 

sound. There are also other ways that the assignments might be made. For example, 

the sequential alignment might begin with the highest, rather than the lowest, 

partials. The partials with the maximum magnitudes might be aligned, followed by 

those with the second largest, and so forth, until all are exhausted. Or, alternatively, 

some important pair of partials might be identified (e.g., the largest in magnitude, or 

the ones nearest the spectral centroid) and the others aligned sequentially above and 

below. Early experiments suggest that many of these methods lead to erratic results 

in which the pitch changes dramatically in response to small changes in the input 

sound. 

Applications of the Spectral Toolbox 

The analysis, spectral mappings, and resynthesis processes described in the 

previous sections enable a variety of routines including fixed spectral mappings 

(sending all partials of a sound to fixed destinations), spectral morphing 

(continuously interpolating between the partials of a source sound and a 

destination) and Dynamic Tonality. These are described in the next few sections. 

Fixed Destinations 

Perhaps the most straightforward use of the spectral mapping technology is to 

map the input to a fixed destination spectrum . For example, since harmonic 

sounds play an important role in perception,  might be chosen to be a harmonic 

series built on a fundamental frequency  (i.e., ) as implemented in the 

SpT.MakeHarm routine of Figure 5. A sound is played using sfplay and the root  is 

chosen either by typing into the rightmost number box or by clicking on the 

keyboard (this can easily be replaced with a MIDI input). The input might be an 

inharmonic sound such as a gong (see harmonicgong at Spectral Tools Homepage), or 

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
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it may be a full piece such as the 65 Hz Rag (Spectral Tools Homepage) which maps 

all partials of a performance of Joplin‘s Maple Leaf Rag to integer multiples of 

. It is also possible to ―play‖ the mini-keyboard, to change the fundamental 

frequency of the harmonic series over time. Maple-makeharm (Spectral Tools 

Homepage) is a brief improvisation where the fundamental is changed as the piece 

progresses. One fascinating aspect is that there is a smooth transition from rhythm 

(when the piece is mapped to all harmonics of a low fundamental) to melody (when 

mapped to all harmonics of a high fundamental). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, the SpT.Ntet routine maps all partials of the input sound to scale steps 

of the N-tone equal tempered scale. This can be used to create sounds that are 

particularly appropriate for usage in the given N-TET scale (Sethares 1997) or to 

map a complete performance into an approximation of the ―same‖ piece in N-TET. 

For example, Maple5tet (Spectral Tools Homepage) maps all the partials of Joplin‘s 

Maple Leaf Rag into a fixed 5-TET template. The more sophisticated Magic Leaf Rag 

Figure 5. SpT.MakeHarm maps all partials of the input sound to a single harmonic series with root 

specified by the keyboard or by the rightmost number box. The three number boxes labeled “# 

peaks,” “multiplier,” and “width of median” set the parameters for spectral peak detection and 

noise/signal separation. The box labeled “noise level” controls the relative volumes of the signal and 

noise paths. These parameters are common to all routines in the Spectral Toolbox. 

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
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(Spectral Tools Homepage) transforms the same piece into many different N-TETs, 

using different tuning mappings in a way that is somewhat analogous to the change 

of chord patterns in a more traditional setting. The most general of the fixed 

destination routines is SpT.Sieve, which maps the input sound to a collection of 

partials specified by a user-definable table. 

Spectral Morphing 

Spectral morphing generates sound that moves smoothly between a source 

spectrum  and a destination spectrum  over a specified time . Suppose that  has 

partials at  with magnitude  and  has partials at  

with magnitude . The two spectra are assumed to be aligned (using one of the 

methods of Figure 4) so that both have the same number of entries . Let  and  

be the noise spectra of  and . Let  be 0 at the start of the morph and be 1 at time 

. The morph then defines the spectrum at all intermediate times with log-spaced 

frequencies 

 (3) 

linearly-spaced intermediate magnitudes 

 (4) 

and interpolated noise spectra 

 (5) 

Logarithmic interpolation is used in Equation 3 because it preserves the 

intervallic structure of the partials. The most common example is for harmonic 

series. If the source and destination each consist of a harmonic series (and if the 

corresponding elements are mapped to each other in the alignment procedure), then 

at every , the intervening sounds also have a harmonic structure. This is shown 

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
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mathematically in Appendix A and can be demonstrated concretely using 

SpT.MorphOnBang, which appears in Figure 6. 

 

 

 

 

 

 

 

 

 

 
 

 

To explore the spectral morphing, we recorded Paris-based instrumentalist Carol 

Robinson playing a number of short multiphonics whose timbres ranged from soft 

and mellow to noisy and harsh. Pairs of multiphonics were spectrally morphed so 

that each pair was about 20 seconds long. Some samples can be heard in Three 

Versions of Clarinet + Harmonics (Spectral Tools Homepage). A simple quarter-tone 

melodic line was written above the multiphonic accompaniment analogous to the 

way a standard melody can be accompanied by block chords. There are two possible 

directions for the morph: to morph the clarinet into the multiphonics or to morph 

the multiphonics into the clarinet. 

In the first case, the clarinet was set to be the source F and the multiphonics to be 

the destination G. The merging of the clarinet was, if anything, too successful 

because, while the effect is interesting, the changes to the spectrum of the clarinet 

Figure 6. SpT.MorphOnBang can be applied to individual sounds or to complete musical 

performances. The time over which the morph occurs is specified by the slider and is triggered by the 

button on the right. 

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
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render it, in many places, unrecognizable. Several examples are given in Three 

Versions of Clarinet + Harmonics . The first plays the unaccompanied melody. The 

next three morph that same line into various sets of multiphonics. 

In the second case, a Max/MSP patch is used to ―listen‖ to the melody and 

choose which multiphonics to play at each instant. The score calls for significant 

microtonal improvisation by the clarinet player, and the software chooses, retunes, 

and morphs the multiphonics on-the-fly to create an unusual inharmonic backdrop. 

The Legend of Spectral Phollow premiered at CCMIX in Paris on July 13, 2006. Carol 

Robinson played the clarinet, and William Sethares ―played‖ the software. A 

recording of this performance can be heard at Legend (Spectral Tools Homepage). 

Dynamic Tonality 

There are many possible tunings: equal temperaments, meantones, circulating 

temperaments, various forms of just intonation, and so forth. Each seems to require 

a different method of playing and a different interface, necessitating significant time 

and effort to master. In (Milne, Sethares, and Plamondon 2007, 2008), we introduced 

a way of parameterizing tunings so that many seemingly unrelated systems can be 

performed on one keyboard with the same fingerings for the same chords and 

melodies; this is called tuning invariance. For example, the Syntonic continuum 

begins at 7-TET, moves through 19-TET, a variety of meantone tunings, 12-TET, 17-

TET, 22-TET and on up to 5-TET (as shown on the main tuning slider in Figure 7). 

On a musical controller with a two-dimensional array of keys, a chord or melody 

can usually be fingered the same throughout all the tunings of this continuum. 

The TransFormSynth, which is implemented using the same audio routines as 

described in the Spectral Toolbox, realizes these methods and extends them in two 

ways. First, the tuning can be moved towards a nearby just intonation. Second, the 

spectrum of the sound can be tempered along with the tuning. Both of these 

temperings are implemented using the Tone Diamond—a convenient two-

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
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dimensional joystick interface—which is the diamond-shaped object at the top-left of 

Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The tuning panel of TransFormSynth displaying the syntonic tuning continuum. The vertical 

slider at the center controls the -tuning; the rotary knob at the top-right controls the –tuning; the 

Tone Diamond at the top-left controls the relationship between the tempering of the tuning and the 

tempering of the timbre. 
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A Dynamic Tonality synthesizer (like TransFormSynth) has a small number of 

parameters that enable many musically useful, and relatively unexplored, features: 

1. The discrete parameter  switches between a number of different tuning 

continua, some of which embed traditional well-formed scales (e.g., pentatonic, 

diatonic, chromatic), and some of which embed radically different well-formed 

scales (e.g., scales with 3 large steps and 7 small steps per octave). 

2. The continuous parameters , , and  move the tuning between a number of 

equal temperaments (e.g., 7-TET, 31-TET, 12-TET, 17-TET, and 5-TET), non-equal 

temperaments (e.g. meantone, and Pythagorean), circulating temperaments, and 

closely-related just intonations. 

3. The continuous parameter  moves the timbre from being perfectly harmonic 

to being perfectly matched to the tuning, thus minimizing sensory dissonance 

(Sethares 1993). 

4. The mapping to a two-dimensional lattice of buttons  and  on a musical 

controller provides the same fingering pattern for all contrapuntal intervals across 

all possible keys and tunings within any given continuum (Milne, Sethares, and 

Plamondon 2008). 

Each of these parameters is defined and explained in more depth in the following 

subsections. 

Generator Tunings (  and ) and Note Coordinates (  and ) 

Perhaps the simplest way to describe the system is by example. Consider 11-limit 

just intonation, which consists of all the intervals generated by integer multiples of 

the primes 2, 3, 5, 7, and 11. Thus simple intervals, such as the just fifth or just major 

third, can be represented as the frequency ratios  and , 

respectively, while a less simple interval such as the just major seventh (a perfect 

fifth plus a major third) is  A comma , is a set of 

integers that tempers (changes the numerical values of) the generators so that 
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. For example, the well-known syntonic comma, which can be 

written in fractional form as  , is represented by  since it is equal to 

. A system of commas can be represented by a matrix of integer 

values, so the commas , , 

, can be represented as the matrix , 

which has a null space (kernel) , where T is the 

transpose operator. This matrix is transposed and then written in row-reduced 

echelon form to give the transformation matrix . Using 

, the matrix  transforms any interval  

into a similarly sized (i.e., tempered) interval . A basis (i.e., a set of vectors 

that can, in linear combination, represent every vector in that space) for the 

generators can be found by inspection of the columns of  as , , 

, , and . Thus every interval in the 

continuum (this is the 11-limit Syntonic continuum shown in Figure 7) can be 

represented as integer powers of the two generators  and —that is, as . For 

further information and examples, see Milne, Sethares, and Plamondon (2008). 

This means that if  and  are mapped to a basis  of a button lattice (i.e., 

), such as the Thummer‘s (Figure 8), then the fundamental 

frequency of any button of coordinate  with respect to that basis, is given by 

 (6) 

where  is the frequency of the reference note (by default the reference note is D3, 

whose concert pitch is 146.83Hz). 
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 In the Syntonic continuum, the value of  is near 2 and can be adjusted by the 

rotary knob labeled ―octave width‖ at the top-right of Figure 7; the value of  is near 

1.5 and is specified by the main tuning slider. Altering the -tuning while playing 

allows a keyboard performer to emulate the dynamic tuning of string and 

aerophone players who prefer Pythagorean (or higher) tunings when playing 

expressive melodies, quarter-comma meantone when playing consonant harmonies, 

and 12-TET when playing with fixed pitch instruments such as the piano (Sundberg 

1989). 

Related Just Intonations ( ) 

The vertical dimension of the Tone Diamond (at the top-left of Figure 7) alters the 

tuning in a different way—by moving it towards a related 5-limit just intonation. A 

-limit just intonation contains intervals tuned to ratios that can be factorized by 

prime numbers up to, but no higher than, . These systems, therefore, contain many 

intervals tuned to small number ratios (e.g., 3:2, 4:3, 5:4, 6:5, 7:4, 7:5, etc.), and these 

intervals are typically thought to be maximally consonant and ―in tune‖ when using 

sounds with harmonic spectra. For this reason, just intonation has been frequently 

Figure 8. The coordinates  of the Thummer's button lattice, when using its default Wicki note 

layout (Milne, Sethares and Plamondon 2008). 
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cited as an ideal tuning (e.g., by Partch (1974), and Mathieu (1997)). However, 5-limit 

just intonation is three-dimensional, and higher-limit JI‘s have even more 

dimensions, making it all but impossible to avoid ―wolf‖ intervals when mapping to 

a fixed pitch instrument (Milne, Sethares, and Plamondon 2007). 

Deciding precisely which JI ratios should be used also presents an issue, because 

there is always ambiguity about precisely which JI interval is represented by a 

tempered interval (because the mapping matrix  is many-to-one, any ―reverse-

mapping‖ is somewhat ambiguous). For this reason we provide two aesthetically 

motivated choices: ―Major JI‖, at the bottom of the diamond, maximizes the number 

of justly tuned major triads (of ratio 4:5:6); while ―Minor JI‖, at the top of the 

diamond, maximizes the number of justly tuned minor triads (of ratio 10:12:15). 

The major and minor JI tuning ratios (relative to the reference note) for every 

note  are stored in a table. The major JI values are used when the control dot is 

in the lower half of the Tone Diamond (i.e., ), the minor JI values are 

used when the control dot is in the upper half of the Tone Diamond (i.e., 

). Every different tuning continuum  requires a different set of values. The vertical 

dimension of the Tone Diamond controls how much the tuning is moved towards 

these JI values, denoted , using the formula , where 

 is the position of the control dot on the Tone Diamond‘s -axis. This means the 

frequency of any note can be calculated accordingly: 

 (7) 

The Tone Diamond and main tuning slider, therefore, facilitate dynamic tuning 

changes between many different tuning systems. When the Tone Diamond‘s control 

point is anywhere along the central horizontal line (the ―Max. Regularity‖ line), the 

tuning is a regular one- or two-dimensional tuning such as 12-TET or quarter-

comma meantone, as shown on the main tuning slider. When the control point is 
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moved upwards or downwards the tuning moves towards a related just intonation. 

The tunings that are intermediate between perfect regularity and JI are like the 

circulating temperaments of Kirnberger and Vallotti in that every key has a (slightly) 

different tuning. And all of these tunings have essentially the same fingering when 

played on a 2-D lattice controller. 

Spectral Tempering ( ) 

The Tone Diamond also facilitates the dynamic tempering of spectrum. The matrix  

can be used to parameterize the timbres so as to minimize sensory dissonance when 

playing in the ―related‖ scale (Sethares 1993). Partials of a harmonic (or 

approximately harmonic) sound are indexed by integers and can be represented as a 

vector in . Thus , , , 

, , etc. Every different tuning continuum  

(such as the Syntonic, discussed above) has a different  matrix, and these  are 

stored in a table. The th partial can therefore be tempered to  and then 

mapped to . Thus the timbre is tempered in a consistent fashion (and using 

the same interface as) the tuning. It is easy to verify that these temperings are the 

same as those identified by Sethares (1997) for the special case of equal 

temperaments.  

The horizontal dimension of the Tone Diamond controls how much of this 

tempering is applied using the interpolation formula , where , 

and  is the position of the control dot on the Tone Diamond‘s -axis. This 

means that when the Tone Diamond‘s control dot is anywhere on the ―Max. 

Harmonicity‖ line,  and the sound remains harmonic with integer partials ; 

when the control dot is fully to the right,  and the partials are tempered to 

; and whenever the control dot is on the ―Max. Consonance‖ line, the 

partials are always fully related to the tuning.  
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The frequency of any partial can, therefore, be defined in terms of , 

and , using the following formula: 

 

 (8) 

If , , and , are expressed in cents, which may be more convenient for 

the user, the above formula can be rewritten as: 

 (9) 

The Tone Diamond is labeled to show that the further the control point is from 

the ―Max. Harmonicity‖ line, the less harmonic its partials; the further the control 

point is from the ―Max. Consonance‖ line, the less related its partials are to the 

tuning; the further the control point is from the ―Max. Regularity‖ line, the less 

regular are its interval sizes. The diamond clearly illustrates how every possible 

position of the control point represents a compromise between maximal 

harmonicity, maximal consonance, and maximal regularity; no system can have all 

three at the same time. 

Tuning Continua ( ) and Compositional Possibilities 

In this article we have focused on the Syntonic tuning continuum, but there are 

numerous other useful continua, each with unique and unfamiliar intervallic 

structures. The TransFormSynth currently implements two other continua—―Magic‖ 

and ―Hanson‖—which open up interesting compositional avenues. They contain 

scales that embed numerous major and minor triads, but have a radically different 

structure to those found in any standard Western tuning. For example, the Magic 

continuum has a ten-note well-formed scale (with seven small steps and three large 

steps) that contains ten major or minor triads; the Hanson continuum has an eleven-

note well-formed scale (with seven small steps and four large steps) that also 
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contains ten major or minor triads. Magic Traveller (Spectral Tools Homepage) uses 

the above-described Magic scale. It may well be that the chords in these systems 

have functional relationships that are quite different to those found in standard 

diatonic/chromatic tonality. Such systems, therefore, open up the possibility of an 

aesthetic research program similar to that which may be said to have characterized 

the development of common-practice from the birth of harmonic tonality in the 

sixteenth century to the ―crisis of tonality‖ at the end of the nineteenth. 

But the well-structured tonal relationships found in these continua do not 

support only a strictly tonal compositional style. Serial (and other ―atonal‖) 

compositional techniques are just as applicable to these alternative continua, as are 

techniques which explore the implications of unusual timbral combinations and 

structures. Each continuum offers a unique set of mathematical possibilities and 

constraints. For example, the familiar 12-note division of the octave has many factors 

(2, 3, 4, and 6), thus enabling interval classes of these sizes to cycle back to the 

starting note, and modes of limited transposition to be formed. Conversely, a 13-

note division of the octave, which can be made to sound quite ―in-tune‖ when the 

spectrum is tempered to the Magic continuum, has no factors and so contains no 

modes of limited transposition and no interval cycles. The 15-note division found in 

Hanson has factors of 3 and 5, suggesting a quite different set of structural 

possibilities. ChatterBar and Lighthouse (Spectral Tools Homepage) are both non-

serial ―atonal‖ pieces—in 53-TET Syntonic and 11-TET Hanson, respectively. 

Alongside these structural possibilities are the dynamic variations in tuning and 

timbre that can be easily controlled (and even notated) with the , , , and  

parameters. Smooth changes of tuning and timbre are at the core of C2ShiningC , 

while in Shred (Spectral Tools Homepage), the music switches from 12-TET to 5-TET 

Syntonic. 

http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
http://www.cae.wisc.edu/~sethares/spectoolsCMJ.html
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Dynamic Tonality, therefore, opens up a rich set of compositional possibilities of 

both depth and simplicity. 

Discussion 

The analysis-resynthesis method utilized by the Spectral Toolbox allows the 

independent control of both frequency and amplitude for every partial in a given 

sound. However, since a typical musical sound consists of tens or even hundreds of 

audible partials, it is apparent that their individual manipulation is not necessarily 

practical. In order to reduce information load and retain musical relevance, there is 

need for an organizational routine which parameterizes spectral information in a 

simple and musically meaningful interface. The Spectral Toolbox has addressed this 

problem by providing three different routines: (1) mapping partials to a fixed 

destination, (2) morphing between different spectra, and (3) Dynamic Tonality. 

Though we have so far only discussed the reconstruction of preexisting sounds, 

it is also possible to manipulate the harmonic information of purely synthesized 

sound. The ideas presented in this paper are applicable to virtually any synthesis 

method that allows complete control over harmonic information. For example, The 

Viking (Milne and Prechtl, 2008) is an additive synthesizer which implements 

Dynamic Tonality in the same manner as the TransFormSynth, except that it 

synthesizes each partial with its own sinusoidal oscillator. Similarly, The Synth O’ 

Nine Filters (Prechtl and Milne, 2009) uses modal synthesis to implement Dynamic 

Tonality in a physical modeling algorithm. In this case, a noise loop or burst is fed 

through a series of resonant filters that represent specific partials through their 

individual feedback coefficients.  

There are benefits pertaining to each of these synthesis methods: additive 

synthesis is, relatively speaking, computationally efficient, while modal synthesis, at 

the cost of greater computational power, enables realistic and dynamic physical 

modeling. However, the analysis-resynthesis method is interesting because it 



 

Sethares, Milne, Tiedje, Prechtl, Plamondon  23 

 

Computer Music Journal   

enables the harmonic manipulation of any sound, and can do so for both fixed and 

live audio inputs. This means that, given its relatively simple user interface, the 

Spectral Toolbox has the capacity to provide novel and worthwhile approaches to 

computer music composition and performance. The musical examples available on 

the website should hopefully provide at least some indication of these new artistic 

possibilities. 

Beyond the artistic benefits described above, there are also strong implications 

for music research, particularly in the area of cognition. The mutual control of 

tuning and timbre facilitates a deeper examination of the musical ramifications that 

such a relationship entails. Perhaps of greatest interest is how formerly inaccessible 

(that is, in an aesthetic sense) tunings may be rendered accessible through the 

timbral manipulations described above. Such an idea calls for further research 

regarding varying forms of dissonance—most notably melodic dissonance (Van der 

Merwe 1992; Weisethaunet 2001)—and harmonic tonality in general. It seems likely, 

especially with the Spectral Toolbox, that such concepts will soon need to take 

alternate tunings into account. In fact, the widespread use of microtonality in 

electro-acoustic composition, performance, and research seems much closer now 

than it ever has. 
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Appendix A: Preservation of Intervallic Structure Under 

Logarithmic Interpolation 

Suppose that the  source peaks  and the  destination peaks  have the same 

intervallic structure, i.e., that 

 (10) 

for . Morphing the two sounds using the logarithmic method 

(Equation 3) creates a collection of intermediate sounds with peaks at 

 (11) 

Then for every , the intervallic structure in the  is the same as that in 

the source and destination. To see this, observe that 

 

 

(12) 

The last equality follows directly from Equation 10. In particular, if the  and  are 

the  partials of harmonic sounds (though perhaps with different magnitudes and 

different fundamentals) then the interpolated sounds  are also harmonic, with 

spectra that smoothly connect  and  and with fundamental frequency (and hence, 

most likely, with pitch) that moves smoothly from that of  to that of . 


