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Transforms

Transforms model a signal as a collection of waveforms
of a particular form: sinusoids for the Fourier transform,
mother wavelets for the wavelet transforms, periodic basis
functions for the periodicity transforms. All of these methods
are united in their use of inner products as a basic measure
of the similarity and dissimilarity between signals, and all
may be applied (with suitable care) to problems of rhythmic
identification.

Suppose there are two signals or sequences. Are they the same or are they different?
Do they have the same orientation or do they point in different directions? Are they
periodic? Do they have the same periods? The inner product is one way of quanti-
fying the similarity of (and the dissimilarity between) two signals. It can be used to
find properties of an unknown signal by comparing it to one or more known signals,
a technique that lies at the heart of many common transform methods. The inner
product is closely related to (cross) correlation, which is a simple form of pattern
matching useful for aligning signals in time. A special case is autocorrelation which
is a standard way of searching for repetitions or periodicities. The inner product pro-
vides the basic definitions of a variety of transform techniques such as the Fourier
and wavelet transforms as well as the nonorthogonal periodicity transforms.

The first section reviews the basic ideas of the angle between two signals or
sequences in terms of the inner product, and sets the mathematical notations that
will be used throughout the chapter. Sect. 5.2 defines the cross correlation between
two signals or sequences in terms of the inner product and interprets the correlation
as a measure of the fit or alignment between the signals. Sect. 5.3 shows how the
Fourier transform of a signal is a collection of inner products between the signal and
various sinusoids. Some cautionary remarks are made regarding the applicability of
transforms to the rhythm-finding problem. Two signal processing technologies, the
short time Fourier transform and the phase vocoder are then described in Sects. 5.3.3
and 5.3.4. Wavelet transforms are discussed in Sect. 5.4 in terms of their operation
as an inner product between a “mother wavelet” and the signal of interest. The final
section describes the Periodicity transforms, which are again introduced in terms of
an inner product, and some advantages are noted in terms of rhythmic processing.
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5.1 Inner Product: The Angle Between Two Signals

The angle between two vectors gives a good indication of how closely aligned they
are: if the angle is small then they point in nearly the same direction; if the angle is
near �� degrees, then they point in completely different directions (they are at right
angles). The generalization of these ideas to sequences and signals uses the inner
product to define the “angle.” When the inner product is large, the sequences are
approximately the same (“point in the same direction”) while if the inner product is
zero (if the two are orthogonal) then they are like two vectors at right angles.

The most common definition of the inner product between two vectors � and � is
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�
�
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The length (or norm) of a vector is the square root of the sum of the squares of its
elements, and can also be written in terms of the inner product as
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For example, consider the two vectors � � ��� �� and � � ��� �� shown in
Fig. 5.1. The lengths of these vectors are ����� �

�
�� 	 �� �

�

 and ����� ��

�� 	 �� � � and the inner product is ��� �� � � � �	 � � � � �. The angle between
� and � is the � such that
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For the vectors in Fig. 5.1, ����� � ��
�

and so � � ���� radians or about �� degrees.
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Fig. 5.1. The angle � between two vectors � and
� can be calculated from the inner product us-
ing (5.3). The projection of � in the direction �
is ����������� (which is the same as �����

����� ). This
is the dotted line forming a right angle with �.
The projection of � onto �, given by �����

����� , is also
shown. If a projection is zero, then � and � are
already at right angles (orthogonal).

The inner product is important because it extends the idea of angle (and espe-
cially the notion of a right angle) to a wide variety of signals. The definition (5.1)
applies directly to sequences (where the sum is over all possible �) while
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defines the inner product between two functions ���� and ���� by replacing the sum
with an integral. As before, if the inner product is zero, the two signals are said to be
orthogonal. For instance, the two sequences

� � �� � ��� �������� �� �������� � � ��
� � �� � ������ ����� ����� ����� � � ��

are orthogonal, and
	 � �� � ��� �� �� �� �� ������ � � ��

is orthogonal to both � and �. Taking all linear combinations of �, �, and 	 (i.e., the
set of all 
�� 	 
�� 	 
�	 for all real numbers 
�) defines a subspace with three
dimensions. Similarly, the two functions

���� � ��������� and ���� � ���������

are orthogonal whenever �� �� ��. The set of all linear combinations of sinusoids for
all possible frequencies �� is at the heart of the Fourier transform of Sect. 5.3 and
orthogonality plays an important role because it simplifies many of the calculations.
If the signals are complex-valued, then ���� in (5.4) (and ���� in (5.1)) should be
replaced with their complex conjugates.

Suppose there is a set of signals �� that all have the same norm, so that ������� �
������� for all  and �. Given any signal �, the inner product can be used to determine
which of the ��’s is closest to � where “closeness” is defined by the norm of the
difference. Since

��� � ����� � ������ � � ��� ���	 ������� (5.5)

and since ����� and ������ are fixed, the  that minimizes the norm on the left hand side
is the same as the  that maximizes the inner product ��� ���.

5.2 Correlation and Autocorrelation

The (cross) correlation between two signals ���� and ���� with shift � can be defined
directly or in terms of the inner product:
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� �

��
������� 	 � ���

� ������ ���	 � �� � (5.6)

When the correlation����� � is large, � and � point in (nearly) the same direction. If
����� � is small (near zero), ���� and ���	 � � are nearly orthogonal. The correlation
can also be interpreted in terms of similarity or closeness: large ����� � mean that
���� and ���	 � � are similar (close to each other) while small����� � mean they are
different (far from each other). These follow directly from (5.5).

In discrete time, the (cross) correlation between two sequences ���� and ���	 ��
with time shift � is
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Correlation shifts one of the sequences in time and calculates how well they match
(by multiplying point by point and summing) at each shift. When the sum is small
then they are not much alike; when the sum is large, many terms are similar. Equa-
tions (5.6) and (5.7) are recipes for the calculation of the correlation. First, choose a
� (or a �). Shift the function ���� by � (or ���� by �) and then multiply point by point
times ���� (or times ����). The area under the resulting product (or the sum of the
elements) is the cross correlation. Repeat for all possible � (or �).

Seven pairs of functions ���� and ���� are shown in Fig. 5.2 along with their cor-
relations. In (a), a train of spikes is correlated with a Gaussian pulse. The correlation
reproduces the pulse, once for each spike. In (b), the spike train is replaced by a si-
nusoid. The correlation smears the pulse and inverts it with each undulation of the
sine. In (f), two random signals are generated: their correlation is small (and random)
because the two random sequences are independent.

x(t)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

y(t) Rxy(τ) Fig. 5.2. Seven examples of the
crosscorrrelation between two sig-
nals � and �. The examples consider
spike trains, Gaussian pulses, sinu-
soids, pulse trains, and random sig-
nals. When � � � (as in (c) and (d)),
the largest value of the correlation oc-
curs at a shift � � �. The distance
between successive peaks of � �����
is directly related to the periodicity in
the input.

One useful situation is when � and � are two copies of the same signal but dis-
placed in time. The variable � shifts � and at some shift � � they become aligned.
At this � �, ���� is the same as ��� 	 ��� and the product is positive everywhere:
hence, when integrated,�����

�� achieves its largest value. This situation is depicted
in Fig. 5.2(g) which shows a � that is a shifted version of �. The maximum value
of the correlation occurs at at the � � where ���� � ��� 	 � �, where the signals are
closest. Correlation is an ideal tool for aligning signals in time.

A special case that can be very useful is when the two signals � and � happen
to be the same. In this case, ����� � � ������ ���	 � �� is called the autocorrelation
of �. For any �, the largest value of the autocorrelation always occurs at � � �, that
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is, when there is no shift. This is particularly useful when � is periodic since then
����� � has peaks at values of � that correspond precisely to the period. For exam-
ple, Fig. 5.2(c) shows a periodic spike train with one second between spikes. The
autocorrelation has a series of peaks that are precisely one second apart. Similarly,
in (d) the input is a sinusoid with frequency ��
 Hz. The peaks of the autocorrelation
occur � seconds apart, exactly the periodicity of the sine wave.

5.3 The Fourier Transform

Computer techniques allow us to look inside a sound; to dissect it into its constituent
elements. But what are the fundamental elements of a sound? Are they sine waves,
sound grains, wavelets, notes, beats, or something else? Each of these kinds of ele-
ments requires a different kind of processing to detect the regularities, the frequen-
cies, scales, or periods.

As sound (in the physical sense) is a wave, it has many properties that are anal-
ogous to the wave properties of light. Think of a prism, which bends each color
through a different angle and so decomposes sunlight into a family of colored beams.
Each beam contains a “pure color,” a wave of a single frequency, amplitude, and
phase.1 Similarly, complex sound waves can be decomposed into a family of simple
sine waves, each of which is characterized by its frequency, amplitude, and phase.
These are called the partials, or the overtones of the sound, and the collection of all
the partials is called the spectrum. Fig. 5.3 depicts the Fourier transform in its role
as a “sound prism.”

This prism effect for sound waves is achieved using the Fourier transform. Math-
ematically, the Fourier transform of a function ���� is defined as
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�
(5.8)

which is the inner product of the signal ���� and the complex-valued sinusoid 2

�������.
Consider the meaning of the Fourier transform (5.8). First, ���� is a function

of frequency: for each � the integral defined by the inner product is evaluated to
give a complex-valued number with magnitude � and angle �. Since ���� is the
correlation (inner product) between the signal ���� and a sinusoid of frequency � ,
� is the magnitude (and � the phase) of the sine wave that is closest3 to ����. Since
sine waves of different frequencies are orthogonal4 there is no interaction between
� For light, frequency corresponds to color, and amplitude to intensity. Like the ear, the eye

is predominantly blind to the phase of a single sinusoid.
� Euler’s formula specifies the relationship between real and complex sinusoids: � ��� �
������� � ������.

� Recall (5.5).
� That is, the inner product of two sinusoids is

�
��������� �������

�
� Æ������� where Æ�	�

is the “delta function” that has unit area and is zero except when 	 � �.
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high frequencies
= blue light

low frequencies
= red light

middle frequencies 
= yellow light

complex light wave
prism

high frequencies 
= treble

low frequencies 
= bass

middle frequencies 
= midrange

complex sound wave

Fourier 
Transform

Digitize
Waveform

in 
Computer

Fig. 5.3. Just as a prism separates light into its simple constituent elements (the colors of
the rainbow), the Fourier Transform separates sound waves into simpler sine waves in the
low (bass), middle (midrange), and high (treble) frequencies. Similarly, the auditory system
transforms a pressure wave into a spatial array that corresponds to the various frequencies
contained in the wave, as shown in Fig. 4.2 on p. 75.

different frequencies and � is the amount of the frequency � present in the signal
����. The Fourier transform shows how ���� can be uniquely decomposed into (and
rebuilt from) sums of sinusoids.

Second, the Fourier transform is invertible. The inversion formula ���� ���
�������������� �

�
����� �������

�
reverses the role of the time and frequency

variables and ensures that the transform neither creates nor destroys information.

5.3.1 Frequency via the DFT/FFT

The spectrum gives important information about the makeup of a sound and is most
commonly implemented in a computer by running a program called the Discrete
Fourier Transform (DFT) or the more efficient Fast Fourier Transform (FFT). Stan-
dard versions of the DFT and/or the FFT are available in audio processing software
and in numerical packages (such as MATLAB and Mathematica) that can manipulate
sound data files.

Like the Fourier transform, the DFT decomposes a signal into its constituent
sinusoidal elements. Like the Fourier transform, the DFT is an invertible, information
preserving transformation. But the DFT differs from the Fourier transform in three
useful ways. First, it applies to discrete-time sequences which can be stored and
manipulated directly in computers (rather than to functions or analog waveforms).
Second, it is a sum rather than an integral, and so is easy to implement in either
hardware or software. Third, it operates on a finite data record (rather than operating
on a function that must be defined over all time). Given a sequence ���� of length� ,



5.3 The Fourier Transform 111

the DFT is defined by
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� (5.9)

For each value �, (5.9) multiplies each term of the data by a complex exponential
and then sums. Compare this to the Fourier transform; for each frequency � , (5.8)
multiplies each point of the waveform by a complex exponential and then integrates.
Thus ���� is a function of frequency in the same way that ���� is a function of
frequency. Indeed, the term �����	�
� is a discrete-time sinusoid with frequency
proportional to �.

A good example of the use of the DFT/FFT for spectral analysis appears in
Fig. 2.19 on p. 43 which shows the waveform and corresponding spectrum of the
pluck of a guitar string. While the time evolution of the signal is clear from the
waveform, the underlying nature of the sound as a sum of a number of harmonically
related sinusoids is clear from the spectrum. The two plots are complementary and
display different aspects of the same sound.

One source of confusion is that the frequency � in the Fourier transform can
take on any value while the frequencies present in (5.9) are all integer multiples � of
���� . This “fundamental frequency” is precisely the sine wave with period equal to
the length � of the window over which the DFT is taken. Thus the frequencies in
(5.9) are constrained to a discrete set and the frequencies are separated by a constant
difference. This resolution is equal to the sampling rate divided by the window size
(the number of samples used in the calculation), that is,

resolution in Hz �
sampling rate
window size

� (5.10)

For example, the window used for the guitar pluck in Fig. 2.19 contains ��� ���
samples and the sampling rate is ���� KHz. Thus the resolution is ���� Hz. The peak
of the spectrum occurs at entry � � ��� in the output of the FFT, which corresponds
to a frequency of ��� � ���� which is approximately (but not exactly) ��� Hz, as
annotated in the figure. Observe that the units of (5.10) are inverse seconds (the units
of the numerator are samples per second while the denominator has units of samples).
Thus an accuracy of �� Hz requires a duration of only ���� sec and an accuracy of
����Hz requires a time window of ���� sec, as used with the guitar pluck. To achieve
an accuracy of �

��
Hz would require a time window of at least 10 sec, irrespective of

the sampling rate.
Why not simply use long windows for increased resolution? Because long win-

dows do not show when (in time) events occur. For example, Fig. 5.4 shows a signal
that consists of two sinusoids: a sine wave with frequency �
� Hz is followed by a
somewhat larger wave with frequency ��� Hz. The magnitude spectrum shows peaks
near the expected values of ��� and �
� Hz. But it does not show the order of the sine
waves. Indeed, the magnitude spectrum is the same if the sine waves are reversed in
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order, and even if they both sound for the entire time interval. 5 Thus, use of the FFT
requires a compromise: long windows are desired in order to have good frequency
resolution while short windows are desired in order to locate events accurately in
time.
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Fig. 5.4. A signal consists of two sine waves. The first,
at 	
� Hz, lasts for �

 sec and the second, at 	�� Hz,
begins when the first ends. The spectrum shows peaks
corresponding to both sine waves but does not show
their temporal relationship. The spectrum would look
the same if the order of the sine waves were reversed
or if they occurred simultaneously (rather than succes-
sively).

Windowing also influences the accuracy of frequency estimation through the ef-
fect called “smearing.” Fig. 5.5 shows two different analyses of the same ��� Hz sine
wave. In the top case, the window size is ��
 seconds and so exactly ��� repetitions
of the wave fit into the window. Accordingly, all of the inner products in (5.9) are
zero except for one that has frequency exactly equal to ��� Hz. The algorithms in
MATLAB report these values as less than �����, which is numerically indistinguish-
able from zero. In contrast, the bottom analysis uses a window of ��
�� sec and so
an integer number of waves does not fit exactly within the window. This implies that
none of the terms in the inner product have frequency exactly 200 Hz. A large num-
ber of terms become nonzero in order to compensate, to represent a frequency that
falls between the cracks of its resolution.6

5.3.2 Three Mistakes

Over the years, the Fourier transform has found many uses throughout science and
engineering and it is easy to develop a naive overconfidence in its use. In terms of the
rhythm finding goals of Rhythm and Transforms, the naive argument goes something
like this:

The Fourier transform is an ideal tool for finding frequencies and/or peri-
odicities in complex data sets. The beat of a piece of music and the larger

� The phase spectrum of the three cases differs, but the relationship between the phase and
the temporal order is notoriously difficult to decipher.

� The effect of smearing can be studied by observing that the windowed signal is equal to
the product of the signal and the window. Consequently, the spectrum of the windowed
signal is equal to the convolution of the spectrum of the signal (the spike as in the top part
of Fig. 5.5) with the spectrum of the window (in this case, the rectangular window has a
spectrum that is a sinc function). Thus the smearing can be controlled, but never eliminated,
by careful choice of window function. See [B: 169] for details.
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Fig. 5.5. A sine wave of frequency ��� Hz is analyzed
twice, resulting in two spectra. The window used in
top spectrum is �

 sec, and so an integer number of
periods of the signal fits exactly. This means that one
of the terms in the inner product (5.9) has frequency
exactly equal to ��� Hz: this one is large and all oth-
ers are (numerically) zero. In the bottom spectrum, the
window width �

�� does not support an integer num-
ber of periods. No single term in the inner product has
frequency ��� Hz and the representation is “smeared.”

rhythmic structures are, at heart, different frequencies and/or periodicities
that exist in the sound. Accordingly, it should be straightforward to apply
the Fourier transform to find the beat and higher metrical structures within
a musical passage.

This section shows that this argument is fundamentally flawed in three separate ways.
The first flaw is the easiest to see since it has been repeatedly emphasized

throughout the earlier chapters: rhythmic phenomenon are only partially defined by
the sound itself, they are heavily influenced by the perceptual apparatus of the lis-
tener. Accordingly, it is only sensible to expect to be able to locate the part of the
rhythm that is in the sound itself using a technique such as the Fourier transform.

The second flaw arises from a misunderstanding of the nature of rhythmic phe-
nomena. Consider naively applying the FFT to the first 100 sec of an audio CD in
the hopes of finding “the beat” of a performance that occurs at (say) two times per
second. As shown in Fig. 1.4 on p. 7, the phenomenon of musical beats occur at rates
between about 0.2 Hz and 2 Hz. Formula (5.10) shows that 100 sec corresponds to
a frequency resolution of 1/100 Hz which should allow detection within the needed
range with a fair degree of accuracy. But surprise! The output of this FFT contains
no measurable energy below 20 Hz. How can this be? We clearly hear the beat at 2
Hz, how can the FFT show nothing near 2 Hz?

The FFT says that there is no match between the signal (in this case the sound)
and sinusoids with frequencies near 2 Hz. This should come as no surprise, since
human hearing extends from a high of 20 KHz down to a low of about 20 Hz and
we cannot directly perceive a 2 Hz sinusoid.7 Yet we clearly perceive something oc-
curring two times each second. In other words, the perception of rhythm is not a
perception of sinusoids at very low frequencies. Rather, it is a perception of changes
in energy at the specified rate. Thus the “hearing” of a pitch at 200 Hz is a very
different phenomenon from the “hearing” of a rhythm at 2 Hz. While the Fourier
transform is adept at displaying the physical characteristics of the sine waves associ-
ated with the perception of pitch, it does not straightforwardly display the physical
characteristics of patterns of energy associated with rhythmic perception.

� It is common practice to filter out all frequencies below about 20 Hz on recordings. Even
in live situations, music contains no purposeful energy at these frequencies.
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Using this insight, it is easy to modify the sound wave so that the transform
does reveal something. The simplest approach is to take the FFT of the energy of
the sound wave (rather than of the sound wave itself). This is a primitive kind of
perceptually-motivated data preprocessing that might lead to better replication of the
ear’s abilities. But it is a slippery slope: what kind of criteria will specify the best
kind of preprocessing to use? Maybe it would be better to take the absolute value of
the sound wave? Or to take the percent change in the absolute value of the energy?
There are many possibilities, and it is hard to know what criteria for success look
like.

The third flaw in the argument arises from the nature of the FFT itself. Consider
the simplest situation where a drum beats at a regular rhythm. Some kind of simple
preprocessing (such as taking the energy of the sound wave) is applied. The input to
the transform looks like a train of somewhat noisy pulses. The output of the FFT is:
a train of somewhat noisy-looking pulses. Fig. 5.6 shows three cases. In each case
the signal is a set of regularly spaced noises with period � � seconds. The transform
is a set of regularly spaced pulses separated by �

��
. As the time-pulses grow further

apart, the frequency-pulses grow closer together.

x(t) X(f)

(a)

(b)

(c)

Fig. 5.6. The FFT is applied to a train
of noisy pulses. The spectrum is again
a train of noisy pulses. Close pulses
in time imply widely separated pulses
in frequency and distant pulses in time
imply small separation in frequency.
Three cases are shown with progres-
sively longer period.

Students of the Fourier transform will recognize Fig. 5.6 as somewhat noisy
versions of a fundamental result from Fourier series. Let Æ��� represent a single
spike at time �. Then a train of such spikes with � sec between spikes is the sum
���� �



� Æ��� �� �. The Fourier transform of ���� is8
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which is itself a spike train in frequency. Thus the behavior in Fig. 5.6 is not a pathol-
ogy of deviously chosen numerical parameters: it is simply how the transform works.

The goal of the analysis is to locate a regular succession in the input. In the
case of a pulse train this requires locating the distance between successive pulses.
As Fig. 5.6 suggests, it is no easier to locate the distance between pulses in the

� This result can be found in most tables of Fourier transforms since it is the key to the
sampling theorem. See [B: 103].
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transformed data than in the original data itself. Thus, at least in the situation of
simple regular inputs like the pulse train, there is no compelling reason to believe
that the transform provides any insight: it simply returns another problem with the
same character as the original.

To summarize: application of the Fourier transform to the problem of describing
rhythmic phenomena is neither straightforward nor obvious. First is the problem that
only part of the perception of rhythm is located in the sound wave (this critique ap-
plies to all such signal-based approaches). Second is the problem that some kind of
preprocessing of the audio signal is required in order for the transform to show any-
thing. Finally, even in the idealized case where a rhythm consists of exact repetitions
of a brief sound, the Fourier transform provides little insight.

These critiques do not, however, mean that the Fourier transform is incapable of
playing a role in the interpretation of rhythmic phenomenon. Rather, they show that
it is necessary to carefully consider proper uses of the FFT within a larger system.
For example, it can be used as part of a method of pre-processing the audio so as
to emphasize key features of a sound and to locate auditory boundaries where the
character of a sound changes.

5.3.3 Short-time Fourier Transform

The short-time Fourier transform (STFT) is often used when a signal is too long
to be analyzed with a single transform or when it is desirable to have better time-
localization. The idea is to use a window function ���� that zeroes all but a short
time interval. All events in the FFT are then localized to that interval. The windows
are shaped so that when they are overlapped (shifted by � samples and summed)
their sum



	������� is constant for all �. This is shown schematically in Fig. 5.7

where the windows are overlapped by half their support.9

su
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window 1 3

2 4

...

... Fig. 5.7. A set of overlapping windows is used to zero
all but a short segment of the signal. The FFT can then
be applied to that segment in order to localize events
in time. An overlap factor of � is shown;  might be
more common in applications.

Using the window functions, the STFT can be described mathematically in much
the same way as the Fourier transform itself

� Let � ��� be the Fourier transform of the window ��� and ���� be the transform of
the data within the time span of the window. Then the convolution of � ��� and ����
describes the effect of the windowing on the data analysis. See [B: 169] or [B: 217] for a
detailed comparison of various window functions.
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Observe that ���� is a function of both time (� specifies where the window is
nonzero) and frequency (� has the same meaning as in (5.8)). Similarly, the discrete-
time version parallels the definition of the DFT in (5.9)
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where � is the frequency variable and  specifies (via the window ��� � �) where
in time the FFT is taken. Thus the STFT provides a series of spectral snapshots that
move through time. Plotting the snapshots sequentially is like looking at a multi-
banded graphic equalizer. A common plotting technique is to change the magnitude
of the spectra into colors (or into grayscale). Placing the frequency on the vertical
axis and time on the horizontal axis leads to a spectrogram such as that depicting the
Maple Leaf Rag in Fig. 2.20 on p. 44.

The operation of an STFT-based signal processor is diagrammed in Fig. 5.8. The
signal is partitioned into segments by the windows. The FFT is applied to each seg-
ment separately (only one processing path is shown). The resulting spectrum may
then be manipulated in any desired way; later chapters demonstrate some of the pos-
sibilities. In the figure, no changes are made to the spectrum and so the inverse trans-
form (the IFFT block) rebuilds each segment without modification. When summed
together, the segments reconstruct the original signal. Thus the STFT is invertible: it
is possible to break the signal into spectral snapshots and then reconstruct the original
signal from the snapshots.

In typical use, the support of the window (the region over which it is nonzero)
is between 
�� and ���� samples. Using a medium window of size ���� and a
sampling rate of ����KHz, the resolution in frequency is, from (5.10), about ���
Hz.
The resolution in time is ����

�����
	 �� ms (about 1/20 of a sec). This may be adequate

to specify high frequencies (where ���
 Hz is a small percentage of the frequency in
question) but it is far too coarse at the low end. A low note on the piano may have a
fundamental near �� Hz. The resolution of this FFT is only good to within 25%! For
comparison, the distance between consecutive notes on the piano is a constant 6%.
Musical keyboards and scales are designed so that all equidistant musical intervals
are a constant percentage apart in frequency, mimicking the constant percentage pitch
perception of the auditory system.

This discussion raises two questions. First, is there a way to improve the fre-
quency resolution of the STFT without overly harming the time resolution? The
phase vocoder makes improved frequency estimates by using phase information that
the STFT ignores; this is explored in Sect. 5.3.4. Second, is there a way to create a
transform that operates at constant percentages (like the ear) rather than at constant
differences? Brown’s “constant-Q spectral transform” [B: 19] uses variable length
windows (small ones to analyze high frequencies and large ones to capture low fre-
quencies) that are tuned logarithmically like the steps of the 12-tone equal tempered
scale (the chromatic scale). But it has not become popular, probably due to its non-
invertibility (hence it cannot be used in a signal processing system like the STFT of
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Fig. 5.8. A short-time Fourier trans-
form (STFT) signal processor is an
analysis/synthesis method that begins
by windowing a signal into short seg-
ments. The FFT is applied to each
segment separately and the resulting
spectral snapshot can be manipulated
in a variety of ways. After the de-
sired spectral changes, the resynthesis
is handled by the inverse FFT to return
each segment to the time domain. The
modified segments are then summed.
For the special case where no spectral
manipulations are made (as shown),
the output of the STFT is identical to
the input.

Fig. 5.8). Perhaps the most successful method that can operate with constant percent-
ages is the wavelet transform, which is discussed in Sect. 5.4.

5.3.4 The Phase Vocoder

Like the short-time Fourier transform, the phase vocoder (PV) is an analysis-
resynthesis technique based on the FFT. The analysis portion of the PV begins by
slicing the signal into windowed segments that are analyzed using the FFT. If the PV
used only the magnitude spectrum, the frequency resolution of each segment would
be dictated by (5.10). Instead, the PV compares the phases of corresponding partials
in successive segments and uses the comparison to improve the frequency estimates.
The gains can be considerable. The resynthesis of the PV calculates a vector that can
be inverted using the IFFT. The resulting signal has the same frequency content as
the original but it is stretched or compressed in time.
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Phase vocoders based on banks of (analog) filters were introduced by Flanagan
[B: 62] for the compression of speech signals. Portnoff [B: 170] showed how the
same idea can be implemented digitally using the FFT, and Dolson’s tutorial [B: 49]
helped bring the method to the attention of the computer music community. Recent
work such as Laroche [B: 125] focuses on fine-tuning the resynthesis portion of the
algorithm for various applications such as pitch shifting and time-stretching. Two
MATLAB implementations are currently available on the internet: see Brandorff and
Møller-Nielsen’s pVoc [W: 6] and Ellis’ pvoc.m [W: 13]. Also notable is Kling-
beil’s graphical interface called SPEAR (Sinusoidal Partial Editing Analysis and
Resynthesis) [B: 114] [W: 21]. There is also a version on the CD in the software
folder.

Analysis Using the Phase Vocoder

To see how the analysis portion of the PV can use phase information to make im-
proved frequency estimates, suppose there is a sinusoid of unknown frequency but
with known phases: at time �� the sinusoid has phase �� and at time �� it has phase ��.
The situation is depicted in Fig. 5.9. The sinusoid may have a frequency that moves
it directly from �� to �� in time�� � �����. Or it may begin at ��, move completely
around the circle, and end at �� after one full revolution. Or it may revolve twice, or
� times.10 Thus the frequency must be

�	 �
��� � ��� 	 ���

����
(5.11)

for some integer �. Without more information, it is not possible to uniquely deter-
mine � , though it is constrained to one of the above values.

θ1

θ2

n=0

n=1

Fig. 5.9. The phases �� and �� of a sinusoid are known at two dif-
ferent times � and �. The frequency must then fulfill �� of (5.11),
where the integer � specifies the number of revolutions around the
circle (the number of periods of the sinusoid that occur within the
specified time �). The two cases � � � (the lowest possible fre-
quency) and � � 	 (one complete revolution) are shown.

The phase vocoder exploits (5.11) by locating a common peak in the magnitude
spectrum of two different segments. It then chooses the �	 that is closest to the fre-
quency of that peak. This is shown diagrammatically in Fig. 5.10 where the signal is
assumed to be a single sinusoid that spans the time interval over which the calcula-
tions are made. The output of the windowing is a collection of short sinusoidal bursts.

�	 In other words, the frequency multiplied by the change in time must equal the change in
angle, that is, ����� � �� � �� � �� or some �� multiple. Solving for � gives (5.11).
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The FFT is applied to each burst, resulting in magnitude and phase spectra. For the
case of a pure sinusoidal input, the magnitude spectra of the successive spectra are
the same (as shown). But the phase spectra differ, and these provide the needed val-
ues of �� (the phase corresponding to the peak of the first magnitude spectrum) and
�� (the phase corresponding to the peak of the second magnitude spectrum). The
time difference �� can be determined directly from the window length, the overlap
factor, and the sampling rate. These values are then substituted into (5.11) and the �	
that is closest in frequency to the peak is the PV’s frequency estimate.
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Fig. 5.10. The analysis portion of the
phase vocoder rests on the assumption that
a sinusoid remains fixed in frequency for
the duration of the calculation. The input
(shown here as a ��� Hz sinusoid) is win-
dowed and the FFT is taken of the re-
sulting bursts. The common peaks in the
magnitude spectra are located (in this case
at �	
 Hz) and their phases recorded (in
this case, the phase corresponding to the
first and second bursts are �� � 	
	� and
�� � 	
��). Information about sampling
rate, window size, and overlap factor spec-
ify the time interval between the bursts (in
this case, � � �
��). These parameters
are entered into (5.11) and the �� clos-
est to the frequency of the peak is cho-
sen as the frequency estimate. In more in-
teresting signals, when there are many si-
nusoids, the method is repeated for each
peak in the magnitude spectrum.

To see the PV in action, and to give an idea of its accuracy, consider the problem
of estimating the frequency of a ��� Hz sinusoid using a �� FFT (assuming a sam-
pling rate of 44.1 KHz). According to (5.10), the resolution of the FFT is ���
 Hz,
that is, it is only possible to find the frequency of the sinusoid to within about �� Hz.
Indeed, the nearby frequencies that are exactly representable are �����, ��
��, and
�����, as shown in the enlargement of the magnitude spectrum in Fig. 5.10. Since
the peak at ��
�� is the largest, an actual error of ��� Hz occurs when using only the
FFT magnitude. The PV improves this by exploiting phase information. The phases
corresponding to the peaks at ��
�� are �� � ���� and �� � ���� and so

�	 �
��� � ��� 	 ���

����
�

������ ����� 	 ���

�� � ����
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since11 �� � ����

�
� �

�����
� �����. With these values, the first six �	 are

�������� �������� ��������� ���������� ���������� and ���������

Clearly, the fifth term is closest to ��
��, and the error in the frequency estimate is
������, a vast improvement over 4.7 Hz. This kind of accuracy is typical and is not
just a numerical fluke. In fact, [B: 176] shows that, under certain conditions (for a
signal consisting of a single sinusoid and with a �� corresponding to a single sam-
ple) the phase vocoder estimate of the frequency is closely related to the maximum
likelihood estimate.

In more complex situations, when the input signal consists of many sine waves,
the phase manipulations are repeated for each peak individually, which is justified as
long as the peaks are adequately separated in frequency. Once the analysis portion
is complete, it is possible to change the signal in a variety of ways: by modifying
the rate at which time passes (spacing the output bursts differently from the input
bursts), by changing the frequencies in the signal (so that the output will contain
different frequencies than the input), by adding or by subtracting partials.

Resynthesis Using the Phase Vocoder

Once the modifications are complete, it is necessary to synthesize the output wave-
form. One possibility is to use a straightforward additive-synthesis where the partials
(each with its desired frequency and amplitude) are generated individually and then
summed together. This is computationally intensive12 when there are a large number
of partials. Fortunately, there is a better way: the PV creates a complex-valued (fre-
quency) vector. This is inverted using the IFFT and the resulting output bursts are
time-shifted and summed as in the STFT.

Specification of the magnitude spectrum of the output is straightforward since it
can be inherited directly from the input. The phase values are chosen to ensure conti-
nuity of the most prominent partials through successive bursts, as shown in Fig. 5.11
for a single sinusoid. For each peak � in the magnitude spectrum, the required phase

new sinusoidal burst

one frame

sum of previous bursts Fig. 5.11. Each new windowed sinusoidal element
(burst) is added in phase with the already existing
signal. The result is a continuous sinusoid of the
specified frequency.

�� The window width is ��� with an overlap of �, the sampling rate is 44.1 KHz, and the
second burst is one step ahead of the first.

�� There is still the problem of assigning appropriate phase values to the generated sine waves,
a problem that the phase vocoder handles elegantly.
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can be calculated directly from the frequency �� and the time interval �� between
frame � and frame � � �. This is

��� � ����� 	 �������

It is also necessary to choose the nearby phases (those under the same peak in the
magnitude spectrum). If these are chosen to be ��� 	 mod��� ��� (where � is the
number of bins away from the peak value), the burst generated by the IFFT will be
windowed with tapered ends, as in Fig. 5.11. For example, in the phase spectrum
plots of Fig. 5.10, the values to the left and right of � � and �� are (approximately)
either � or � away.13 The MATLAB savvy reader will find an implementation of the
phase vocoder called PV.m in the software folder on the CD.

5.4 Wavelet Transforms

In the STFT and the phase vocoder, sinusoids are used as basis functions and win-
dows are used to localize the signal to a particular time interval. In the wavelet trans-
forms, the windows are incorporated directly into the basis functions and a variety of
nonsinusoidal shapes are common. Several different “mother wavelets” are shown in
Fig. 5.12.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.12. There are many kinds of wavelet basis
functions, including the (a) Mexican Hat wavelet,
(b) complex Morlet wavelet, (c) Coiflets wavelet, (d)
Daubechies wavelet, (e) complex Gaussian wavelet,
and the (f) biorthogonal spline wavelet. The wavelet
transform operates by correlating the signal with
scaled and shifted versions of a basis function.

The wavelet transform uses the mother wavelet much as the STFT uses a win-
dowed sinusoid: one parameter specifies where in time the wavelet is centered (anal-
ogous to the windowing) and another parameter stretches or compresses the wavelet.
This latter is called the scale of the wavelet and is analogous to frequency in the
STFT.

Let ���� be the mother wavelet (for example, any of the signals in Fig. 5.1214),
and define
�� A formal justification of this choice requires observing the phase values of a Bartlett (and a

Parzen window) have exactly this pattern of values. Other patterns of � and �, such as that
in [W: 32], correspond to different choices of output windowing functions.

�� To be considered a wavelet function, ��� must be orthogonal to the function ��� � 	 and
must have finite energy. Thus �	� � ���� � � and ����� ����� ��.
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� �

�
�� �



�
�

The parameter � shifts the wavelet in time while the parameter 
 scales the wavelet
by stretching or compressing it (and also by adjusting the amplitude). Fig. 5.13 illus-
trates the effects of the two parameters for several different values.

-2-3 -1 0 1 2

ψ1,2(t)

ψ1,1(t)

ψ1,0(t)

ψ1,0(t)

ψ1/2,0(t)

ψ1/3,0(t)

ψ1,-1(t)

Fig. 5.13. The complex Morlet wavelet is a complex-valued sinusoid windowed by a Gaussian

envelope �	�
�� � ��
���	�

��������
������

�� . These plots show the real part of the Morlet

wavelet for a variety of shifts � and scales �. As � decreases, the wavelet moves to the right;
as � decreases, the wavelet compresses and grows.

The continuous wavelet transform uses the shifted and scaled functions as a basis
for representing a signal ���� via the inner product

� �
� �� �
�
����� ��������

�
� (5.12)

For every �
� �� pair, the coefficient� �
� �� is the inner product of the signal with the
appropriately scaled and shifted basis function �������. Where the signal is aligned
with the basis function (when ���� locally looks like the basis function), the coeffi-
cient is large. Where the signal is very different from the basis function (the extreme
being orthogonal) then the coefficient is small. As 
 and � change, the inner product
scans through the signal looking for places (in time) and values (in scale) where the
signal correlates well with the wavelet. This suggests that prior information about
the shape or general character of the signal can be usefully exploited by the wavelet
transform by tailoring the wavelet to the signal. When the information is correct, the
set of parameters � �
� �� can provide a concise and informative representation of
the signal. When the information is incorrect, the wavelet representation may be less
useful.

When the wavelet is real-valued, � �
� �� is real; when the wavelet is complex-
valued (like the Morlet wavelet used in Fig. 5.13) then � �
� �� is complex. It is
common to plot the magnitude of� �
� �� (using a color or grayscale mapping) with
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axes defined by the scale 
 and time �, much as the STFT and the spectrogram are
plotted with axes defined by frequency and time. When � �
� �� is complex, it is
also common to plot a similar contour with the phase, though sometimes plots of the
real and/or imaginary parts are useful. For example, Fig. 5.14 shows separate plots
of the magnitude and phase when the complex Gaussian wavelet (from Fig. 5.12(e))
is applied to an input that is a train of spikes separated by one second. The temporal
locations of the spikes are readily visible in both the magnitude and the phase plots
(the vertical stripes).

Magnitude

time (seconds)

sc
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e

50 10 15 20
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  1

  0.1
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Fig. 5.14. The complex Gaussian wavelet is applied to an input spike train with period one
second. The left plot shows values of the magnitude of the wavelet coefficients � ��� �� of
(5.12) while the right hand plot shows the phase. The location in time of the spikes is easy to
see.

There is an interesting parallel between the wavelet transform of the spike train in
Fig. 5.14 and the corresponding Fourier transform of a spike train in Fig. 5.6. In both
cases, the transform returns a display (plot) that contains data of the same general
character as the input. The output of the FT is a spike train; the output of the wavelet
transform is a collection of regularly spaced ridges in a two-dimensional field. This
suggests that the wavelet transform is not going to be able to magically solve the
rhythm finding problem. In many cases (such as the spike train) it is no simpler to
determine regularity from the output of the wavelet transform than it is to determine
regularity directly from the input itself. Again, as with the FT, this does imply that
wavelet transforms cannot play a role in rhythm analysis. Rather, it means that they
must be used thoughtfully and in proper contexts.

This discussion has stressed the similarities between the STFT and the wavelet
transforms. There are also important differences. In the windowed FFT and the gran-
ular techniques (such as the “Gabor grains” of Fig. 2.23 on p. 46), the frequency of
the waveform is independent of the grain duration. In wavelets, there is an inverse
relation maintained between the frequency of the waveforms and the duration of the
wavelet. Unlike a typical grain, most wavelets contain the same number of cycles
irrespective of the scale (roughly, frequency) of the wavelet. Thus the duration of the
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wavelet window grows or shrinks as a function of the scale; wavelets that capture low
frequency information are dilated (wide in time) while those that represent high fre-
quencies are contracted. This allows more precise localization of the high frequency
components. This can be seen in Fig. 5.13 where the Morlet wavelet maintains the
same number of cycles at all scale values.

5.5 Periodicity Transform

The Periodicity Transform (PT) decomposes data into a sum of periodic sequences
by projecting onto a set of “periodic subspaces” 
�, leaving residuals whose period-
icities have been removed. As the name suggests, this decomposition is accomplished
directly in terms of periodic sequences and not in terms of frequency or scale, as do
the Fourier and Wavelet Transforms. In consequence, the representation is linear-in-
period, rather than linear-in-frequency or linear-in-scale. Unlike most transforms, the
set of basis vectors is not specified a priori, rather, the Periodicity Transform finds
its own “best” set of basis elements. In this way, it is analogous to the approach of
Karhunen-Loeve [B: 23], which transforms a signal by projecting onto an orthogo-
nal basis that is determined by the eigenvectors of the covariance matrix. In contrast,
the periodic subspaces 
� lack orthogonality, which underlies much of the power
of (and difficulties with) the Periodicity Transform. Technically, the collection of all
periodic subspaces forms a frame [B: 24], a more-than-complete spanning set. The
PT specifies ways of sensibly handling the redundancy by exploiting some of the
general properties of the periodic subspaces.

This section describes the PT and compares its output to other transforms in a
number of examples. Later chapters will detail how the PT may be applied to the
problem of detecting rhythmic patterns in a musical setting. Much of this is based on
the discussion in [B: 206] and [B: 207], which may be found on the accompanying
CD.

5.5.1 Periodic Subspaces

A sequence of real numbers ���� is called p-periodic if there is an integer � with
��� 	 �� � ���� for all integers �. Let


� be the set of all �-periodic sequences, and

 be the set of all periodic sequences.

In practice, a data vector � contains � elements. This can be considered to be
a single period of an element �� � 
� � 
, and the goal is to locate smaller
periodicities within �� , should they exist. The strategy is to “project” �� onto the
subspaces 
� for �  � . When �� is “close to” some periodic subspace 
�, then
there is a �-periodic element �� � 
� that is close to the original�. This �� is an ideal
choice to use when decomposing �. To make these ideas concrete, it is necessary to
understand the structure of the various spaces, and to investigate how the needed
calculations can be realized.
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Observe that 
� is closed under addition since the sum of two sequences with
period � is itself �-periodic. Similarly, 
 is closed under addition since the sum of
�� with period �� and �� with period �� has period (at most) ����. Thus, with scalar
multiplication defined in the usual way, both 
� and 
 form linear vector spaces,
and 
 is equal to the union of the 
�.

For every period � and every “time shift” �, define the sequence Æ����� for all
integers � by

Æ����� �


�� if �� � �� mod � � �
�� otherwise

� (5.13)

The sequences Æ�� for � � �� �� �� ���� �� � are called the �-periodic basis vectors
since they form a basis for 
�.

Example 5.1. For � � �, the �-periodic basis vectors

� � � � �� �� �� �� � � � � � 
 � � � � �
Æ�
�
��� � � � � � � � � � � � � � � � � � �

Æ�
�
��� � � � � � � � � � � � � � � � � � �

Æ�
�
��� � � � � � � � � � � � � � � � � � �

Æ�
�
��� � � � � � � � � � � � � � � � � � �

span the �-periodic subspace 
�.

An inner product can be imposed on the periodic subspaces by considering the
function from 
  
 into� defined by

 �� � ! � ���
���

�

�� 	 �

��
����

������� (5.14)

for arbitrary elements � and � in 
. For the purposes of calculation, observe that if
� � 
�� and � � 
�� , the product sequence ������ � 
���� is ����-periodic, and
(5.14) is equal to the average over a single period, that is,

 �� � ! �
�

����

�������
���

������� (5.15)

The corresponding norm on 
 is called the Periodicity Norm

����� �
�
 �� � !� (5.16)

These definitions of inner product and norm are slightly different from (5.1) and
(5.2). The extra term ( �

����
in the example above) ensures that the norm gives the

same value whether � is considered to be an element of 
�, of 
�� (for positive
integers �), or of 
.

Example 5.2. Let � � 
� be the 3-periodic sequence �� � � � �� �� �� � � �� and let � �

� be the 6-periodic sequence �� � � � �� �� �� �� ���� � � ��. Using (5.16), ������ �����.
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As usual, the signals � and � in 
 are said to be orthogonal if  �� � ! � �.

Example 5.3. The periodic basis elements Æ�� for � � �� �� ���� �� � are orthogonal,

and ��Æ���� �
�

���.

The idea of orthogonality can also be applied to subspaces. A signal � is orthog-
onal to the subspace 
� if  �� �� ! � � for all �� � 
�, and two subspaces are
orthogonal if every vector in one is orthogonal to every vector in the other. Unfortu-
nately, the periodic subspaces 
� are not orthogonal to each other.

Example 5.4. If �� and �� are mutually prime, then

 Æ��� � Æ
�
�� ! �  Æ����� � Æ

�
���� ! �

�

����
�� ��

Suppose that ���� � ��. Then 
�� � 
�� and 
�� � 
�� , which restates the
fact that any sequence that is �-periodic is also ��-periodic for any integer �. But

�� can be strictly larger than 
���
�� .

Example 5.5. Let � � �� � � � �� �� ����������� � � �� � 
�. Then � is orthogonal to
both 
� and 
�, since direct calculation shows that � is orthogonal to Æ �

�
and to Æ�

�

for all �.

In fact, no two subspaces 
� are linearly independent, since 
� � 
� for every
�. This is because the vector �, (the �-periodic vector of all ones) can be expressed
as the sum of the � periodic basis vectors

� �

����
���

Æ��

for every �. In fact, 
� is the only commonality between 
�� and 
�� when �� and
�� are mutually prime. More generally, 
	��
�� � 
� when � and� are mutually
prime. The structure of the periodic subspaces reflects the structure of the integers.

5.5.2 Projection onto Periodic Subspaces

The primary reason for formulating this problem in an inner product space is to
exploit the projection theorem. Let � � 
 be arbitrary. Then a minimizing vector in

� is an ��� � 
� such that

���� ����� � ���� ����� for all �� � 
��
Thus ��� is the �-periodic vector “closest to” the original �. The projection theorem,
from Luenberger [B: 135]], is stated here in slightly modified form, shows how � ��
can be characterized as an orthogonal projection of � onto 
�.

Theorem 5.6 (The Projection Theorem). Let � � 
 be arbitrary. A necessary and
sufficient condition that ��� be a minimizing vector in 
� is that the error �� ��� be
orthogonal to 
�.
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Since 
� is a finite (�-dimensional) subspace, ��� will in fact exist, and the pro-
jection theorem provides, after some simplification, a simple way to calculate it. The
optimal ��� � 
� can be expressed as a linear combination of the periodic basis
elements Æ�� as

��� � "�Æ
�

� 	 "�Æ
�

� 	 � � �	 "���Æ���� �

According to the projection theorem, the unique minimizing vector is the orthog-
onal projection of � on 
�, that is, � � ��� is orthogonal to each of the Æ �� for
� � �� �� ���� �� �. Thus

� �  �� ���� Æ�� ! �  �� "�Æ�� � "�Æ�� � ���� "���Æ���� � Æ�� ! �

Since the Æ�� are orthogonal to each other, this can be rewritten using the additivity of
the inner product as

�  �� "�Æ��� Æ�� !
�  �� Æ�� ! � "�  Æ��� Æ�� !
�  �� Æ�� ! � "�

�
�

Hence "� can be written as

"� � �  �� Æ�� ! �

Since � � 
, it is periodic with some period� . From (5.15), the above inner product
can be calculated

"� � �
�

��

�����
���

���Æ�����

But Æ�� is zero except when �� � � mod � � �, and this simplifies to

"� �
�

�

����
	��

���	 ���� (5.17)

If, in addition,��� is an integer, then this reduces to

"� �
�

���

�
����
	��

���	 ���� (5.18)

Example 5.7. N=14, p=2. Let � � 
�� be the 14-periodic sequence

� � �� � � � ������������ ������������ ������������������������������� � � ���
Then the projection of � onto 
� is �� � �� � � � ����������� � � ��.

This sequence �� is the �-periodic sequence that best “fits” this ��-periodic �. But
looking at this � closely suggests that it has more of the character of a �-periodic
sequence, albeit somewhat truncated in the final “repeat” of the �������. Accord-
ingly, it is reasonable to project � onto 
�.
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Example 5.8. N=14, p=3. Let � � 
�� be as defined in example 5.7. Then the pro-
jection of � onto 
� (using (5.17)) is �� � ������ � � � �� �� �� � � ��.

Clearly, this does not accord with the intuition that this � is “almost” �-periodic.
In fact, this is an example of a rather generic effect. Whenever � and � are
mutually prime, the sum in (5.17) cycles through all the elements of �, and so
"� � �

�


���
��� ��� for all �. Hence the projection onto 
� is the vector of all

ones (times the mean value of the �). The problem here is the incommensurability of
the � and �.

What does it mean to say that � (with length � ) is �-periodic when ��� is not
an integer? Intuitively, it should mean that there are ����� complete repeats of the
�-periodic sequence (where �	� is the largest integer less than or equal to 	) plus a
“partial repeat” within the remaining �� � � � ������ elements. For instance, the
� � �� sequence

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��

can be considered a (truncated) �-periodic sequence.
There are two ways to formalize this notion: to “shorten” � so that it is compatible

with�, or to “lengthen” Æ�� so that it is compatible with� . Though roughly equivalent
(they differ only in the final �� elements), the first approach is simpler since it is
possible to replace � with � 	� (the ��-periodic sequence constructed from the first
�� � ������ elements of �) whenever the projection operator is involved. With this

understanding, (5.17) becomes

"� �
�

�����
��
�����
	��

� 	� �� 	 ���� (5.19)

Example 5.9. N=14, p=3. Let � � 
�� be as defined in example 5.7. Then the pro-
jection of � onto 
� (using (5.19)) is �� � �� � � � �������������
� � � ��.

Clearly, this captures the intuitive notion of periodicity far better than example 5.8,
and the sum (5.19) forms the foundation of the Periodicity Transform. The calcula-
tion of each "� thus requires ����� operations (additions). Since there are � different
values of �, the calculation of the complete projection �� requires �� 	 � additions.
A MATLAB subroutine that carries out the needed calculations is available at the web
site [W: 46].

Let ����
�� represent the projection of � onto 
�. Then

����
�� �
����
���

"� Æ
�
� (5.20)

where the Æ�� are the (orthogonal) �-periodic basis elements of 
�. Clearly, when
� � 
�, � � ����
��. By construction, when � is projected onto 
	� it finds the
best ��-periodic components within �, and hence the residual # � � � 
	� has no
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��-periodic component. The content of the next result is that this residual also has no
�-periodic component. In essence, the projection onto
	� “grabs” all the �-periodic
information.

Theorem 5.10. For any integer �, let # � � � ����
	�� be the residual after pro-
jecting � onto 
	�. Then ��#�
�� � �.

All proofs are found in our paper [B: 206] which can also be found on the CD. The
next result relates the residual after projecting onto
� to the residual after projection
onto 
	�.

Theorem 5.11. Let #� � � � ����
�� be the residual after projecting � onto 
�.
Similarly, let #	� � �� ����
	�� denote the residual after projecting � onto 
	�.
Then

#	� � #� � ��#��
	���
Combining the two previous results shows that the order of projections doesn’t

matter in some special cases, that is

����
�� � ������
���
	�� � ������
	���
���
which is used in the next section to help sensibly order the projections.

5.5.3 Algorithms for Periodic Decomposition

The Periodicity Transform searches for the best periodic characterization of the
length� signal �. The underlying technique is to project � onto some periodic sub-
space giving �� � ����
��, the closest �-periodic vector to �. This periodicity is
then removed from � leaving the residual #� � ���� stripped of its �-periodicities.
Both the projection �� and the residual #� may contain other periodicities, and so
may be decomposed into other $-periodic components by projection onto 
 � . The
trick in designing a useful algorithm is to provide a sensible criterion for choosing
the order in which the successive �’s and $’s are chosen. The intended goal of the
decomposition, the amount of computational resources available, and the measure of
“goodness-of-fit” all influence the algorithm. The analysis of the previous sections
can be used to guide the decomposition by exploiting the relationship between the
structure of the various 
�. For instance, it makes no sense to project �� onto 
	�

because �� � 
	� and no new information is obtained. This section presents several
different algorithms, discusses their properties, and then compares these algorithms
with some methods available in the literature.

One subtlety in the search for periodicities is related to the question of appropri-
ate boundary (end) conditions. Given the signal � of length � , it is not particularly
meaningful to look for periodicities longer than � � ���, even though nothing in
the mathematics forbids it. Indeed, a “periodic” signal with length� � � has � � �
degrees of freedom, and surely can match � very closely, yet provides neither a con-
vincing explanation nor a compact representation of �. Consequently, we restrict
further attention to periods smaller than���.
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Probably the simplest useful algorithm operates from small periods to large, as
shown in Table 5.1. The Small-To-Large algorithm is simple because there is no need
to further decompose the basis elements ��; if there were significant $-periodicities
within�� (where “significant” is determined by the threshold� ), they would already
have been removed by �� at an earlier iteration. The algorithm works well because
it tends to favor small periodicities, to concentrate the power in 
 � for small �, and
hence to provide a compact representation.

Table 5.1. Small-To-Large Algorithm

pick threshold � � ��� 	�
let � � �
for � � �� �� 


����

�� � �������

if ������ ��
�����

� �

� � � � ��
save �� as basis element

end
end

Thinking of the norm as a measure of power, the threshold is used to insure that
each chosen basis element removes at least a factor � of the power from the signal.
Of course, choosing different thresholds leads to different decompositions. If � is
chosen too small (say zero) then the decomposition will simply pick the first linear
independent set from among the �-periodic basis vectors

��� �� �
Æ�� � Æ

�

� �

��� �� �
Æ�� � Æ

�

� � Æ
�

��

��� �� �
Æ�� � Æ

�

�� Æ
�

� � Æ
�

�� Æ
�

� � Æ
�

�� ����

which defeats the purpose of searching for periodicities. If � is chosen too large,
then too few basis elements may be chosen (none as � � �). In between “too small”
and “too large” is where the algorithm provides interesting descriptions. For many
problems, ����  �  ��� is appropriate, since this allows detection of period-
icities containing only a few percent of the power, yet ignores those � which only
incidentally contribute to �.

An equally simple “Large-To-Small” algorithm is not feasible, because projec-
tions onto�� for composite �may mask periodicities of the factors of �. For instance,
if ���� � ����
���� removes a large fraction of the power, this may in fact be due
to a periodicity at � � ��, yet further projection of the residual onto 
 �� is futile
since ��� � �����
��� � � by Theorem 5.10. Thus an algorithm that decomposes
from large � to smaller � must further decompose both the candidate basis element
�� as well as the residual #�, since either might contain smaller $-periodicities.

The % -Best Algorithm deals with these issues by maintaining lists of the %
best periodicities and the corresponding basis elements. The first step is to build
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the initial list. This is described in Table 5.2. At this stage, the algorithm has com-
piled a list of the % periodicities $ � that remove the most “energy” (in the sense of
the norm measure) from the sequence. But typically, the $� will be large (since by
Theorem 5.10, the projections onto larger subspaces �� contain the projections onto
smaller subspaces �). Thus the projections ��� can be further decomposed into their
constituent periodic elements to determine whether these smaller (sub)periodicities
remove more energy from the signal than another currently on the list. If so, the new
one replaces the old.

Table 5.2. � -Best Algorithm (step 1)

pick size �
let �	 � �
for � � 	� �� 


��

find � with ����������� ��� 	 ������������� 
� � �	� �� 


�����
� � ��� � ����������
concatenate � and ����� � �������� onto respective lists

end

Fortunately, it is not necessary to search all possible periods �  $ � when decom-
posing, but only the factors. Let &� � ��� $��� is an integer� be the set of factors of
$�. The second step in the algorithm, shown in Table 5.3, begins by projecting the � ��
onto each of its factors ' � &�. If the norm of the new projection �� is larger than
the smallest norm in the list, and if the sum of all the norms will increase by replac-
ing ��� , then the new' is added to the list and the last element ��� is deleted. These
steps rely heavily on Theorem 5.11. For example, suppose that the algorithm has
found a strong periodicity in (say) 
���, giving the projection ���� � ����
����.
Since ��� � �� � 
 � �, the factors are & � ��� �� 
� �� �������������
����. Then the
inner loop in step � searches over each of the �������
�� �' � &. If ���� is “really”
composed of a significant periodicity at (say) ��, then this new periodicity is inserted
in the list and will later be searched for yet smaller periodicities. The% -Best Algo-
rithm is relatively complex, but it removes the need for a threshold parameter by
maintaining the list. This is a sensible approach and it often succeeds in building a
good decomposition of the signal. A variation called the % -Best algorithm with (-
modification (or% -Best� ) is described in Appendix A, where the measure of energy
removed is normalized by the (square root of) the length �.

Another approach is to project � onto all the periodic basis elements Æ �� for all
� and �, essentially measuring the correlation between � and the individual periodic
basis elements. The � with the largest (in absolute value) correlation is then used for
the projection. This idea leads to the Best-Correlation Algorithm of Table 5.4, which
presumes that good � will tend to have good correlation with at least one of the �-
periodic basis vectors. This method tends to pick out periodicities with large regular
spikes over those that are more uniform.
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Table 5.3. � -Best Algorithm (step 2)

repeat until no change in list
for � � 	� �� 


��

find �� with ������� ������� 	 ������������� 
 � �  
let ��� � ����� ����� be the projection onto ���

let ��� � ��� � ��� be the residual
if (����� ��� ������� � ����� ��� ����� ��)
� (����� �� � ���� �������� ����� �� � ���� �������)

replace � with �� and ��� with ���

insert �� and ��� into lists at position �� 	
remove �� and ��� from end of lists

end if
end for

end repeat

Table 5.4. Best-Correlation Algorithm

� = number of desired basis elements
let � � �
for � � 	� �� 


��

 � argmax
�

� � �� Æ�� � �
save �� � ������� as basis element
� � � � ��

end

A fourth approach is to determine the best periodicity � by Fourier methods, and
then to project onto 
�. Using frequency to find periodicity is certainly not always
the best idea, but it can work well, and has the advantage that it is a well understood
process. The interaction between the frequency and periodicity domains can be a
powerful tool, especially since the Fourier methods have good resolution at high
frequencies (small periodicities) while the periodicity transform has better resolution
at large periodicities (low frequencies).

Table 5.5. Best-Frequency Algorithm

� = number of desired basis elements
let � � �
for � � 	� �� 


��

� � ��!"������
� � Round�	���, where � � frequency at which y is max
save �� � ������� as basis element
� � � � ��

end
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At present, there is no simple way to guarantee that an optimal decomposition
has been obtained. One foolproof method for finding the best % subspaces would
be to search all of the possible

�
�
�

�
different orderings of projections to find the one

with the smallest residual. This is computationally prohibitive in all but the simplest
settings, although an interesting special case is when % � �, that is, when only the
largest periodicity is of importance.

5.5.4 Signal Separation

When signals are added together, information is often lost. But if there is some char-
acteristic that distinguishes the signals, then they may be recoverable from their sum.
Perhaps the best known example is when the spectrum of � and the spectrum of �
do not overlap. Then both signals can be recovered from � 	 � with a linear filter.
But if the spectra overlap significantly, the situation is more complicated. This exam-
ple shows how, if the underlying signals are periodic in nature, then the Periodicity
Transform can be used to recover signals from their sum. This process can be thought
of as a way to extract a “harmonic template” from a complicated spectrum.

Consider the signal 	 in Fig. 5.15, which is the sum of two zero mean sequences,
� with period �� and � with period ��. The spectrum of 	 is quite complex, and it is
not obvious just by looking at the spectrum which parts of the spectrum arise from
� and which from �. To help the eye, the two lattices marked ) and * point to the
spectral lines corresponding to the two periodic sequences. These are inextricably
interwoven and there is no way to separate the two parts of the spectrum with linear
filtering.

When the Periodicity Transform is applied to 	, two periodicities are found, with
periods of �� and ��, with basis elements that are exactly ��� � � 	 +� and ��
 �
� 	 +�, that is, both signals � and � are recovered, up to a constant. Thus the PT
is able to locate the periodicities (which were assumed a priori unknown) and to
reconstruct (up to a constant offset) both � and � given only their sum. Even when
	 is contaminated with 
�� random noise, the PT still locates the two periodicities,
though the reconstructions of � and � are noisy. To see the mechanism, let , be the
noise signal, and let ,�� � ��,�
��� be the projection of , onto the ��-periodic
subspace. The algorithm then finds ��� � � 	 +� 	 ,�� as its ��-periodic basis
element. If the � and � were not zero mean, there would also be a component with
period one.

For this particular example, all four of the PT variants behave essentially the
same, but in general they do not give identical outputs. The Small-To-Large algo-
rithm regularly finds such periodic sequences. The Best-Correlation algorithm works
best when the periodic data is spiky. The% -Best algorithm is sometimes fooled into
returning multiples of the basic periodicities (say �� or �� instead of ��) while the
% -Best� is overall the most reliable and noise resistant. The Best-Frequency algo-
rithm often becomes ‘stuck’ when the frequency with the largest magnitude does
not closely correspond to an integer periodicity. The behaviors of the algorithms are
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Fig. 5.15. The signal 	 is the sum of the 	�-
periodic � and the 	�-periodic �. The DFT
spectrum shows the overlapping of the two
spectra (emphasized by the two lattices la-
beled # and $), which cannot be separated
by linear filtering. The output of the � -Best�
Periodicity Transform, shown in the bottom
plot, locates the two periodicities (which were
a priori unknown) and reconstructs (up to a
constant offset) both � and � given only 	.

explored in detail in four demonstration files that accompany the periodicity soft-
ware.15

Two aspects of this example deserve comment. First, the determination of a pe-
riodicity and its corresponding basis element is tantamount to locating a “harmonic
template” in the frequency domain. For example, the ��-periodic component has a
spectrum consisting of a fundamental (at a frequency �� proportional to ����), and
harmonics at ���� ���� ���� ���. Similarly, the ��-periodic component has a spectrum
consisting of a fundamental (at a frequency �� proportional to ����), and harmonics
at ���� ���� ���� ���. These are indicated in Fig. 5.15 by the lattices ) and * above
and below the spectrum of 	. Thus the PT provides a way of finding simple har-
monic templates that may be obscured by the inherent complexity of the spectrum.
The process of subtracting the projection from the original signal can be interpreted
as a multi-notched filter that removes the relevant fundamental and its harmonics.
For a single �, this is a kind of “gapped weight” filter familiar to those who work in
time series analysis [B: 117].

The offsets +� and +� occur because 
� is contained in both 
�� and in 
�
. In
essence, both of these subspaces are capable of removing the constant offset (which
is an element of 
�) from 	. When � and � are zero mean, both +� and +� are zero. If

�� MATLAB versions of the periodicity software can be found on the CD in
files/matlab/periodicity/ and online at [W: 46]. The demos are called
PTdemoS2L, PTdemoBC, PTdemoMB, and PTdemoBF.
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they have nonzero mean, the projection onto (say) 
�� grabs all of the signal in 
�

for itself (Thus +� � mean(x) + mean(y), and further projection onto
�
 gives +� �-
mean(y)). This illustrates a general property of projections onto periodic subspaces.
Suppose that the periodic signals to be separated were �	� � 
	� and ��� � 
��

for some mutually prime � and �. Since 
	��
�� is 
�, both 
	� and 
�� are
capable of representing the common part of the signal, and �	� and ��� can only be
recovered up to their common component in
�. In terms of the harmonic templates,
there is overlap between the set of harmonics of �	� and the harmonics of ���, and
the algorithm does not know whether to assign the overlapping harmonics to � 	�

or to ���. The four different periodicity algorithms make different choices in this
assignment.

It is also possible to separate a deterministic periodic sequence 	 � 
� from a
random sequence � when only their sum � � � 	 	 can be observed. Suppose that
� is a stationary (independent, identically distributed) process with mean � � . Then
-�����
��� � �� � � (where � is the vector of all ones), and so

-�����
��� � -���� 	 	�
��� � -�����
���	-���	�
��� � �� � �	 	

since-���	�
��� � -�	� � 	. Hence the deterministic periodicity 	 can be identi-
fied (up to a constant) and removed from �. Such decomposition will likely be most
valuable when there is a strong periodic “explanation” for 	, and hence for �. In
some situations such as economic and geophysical data sets, regular daily, monthly,
or yearly cycles may obscure the underlying signal of interest. Projecting onto the
subspaces 
� where � corresponds to these known periodicities is very sensible. But
appropriate values for � need not be known a priori. By searching through an appro-
priate range of � (exploiting the various algorithms of Sect. 5.5.3), both the value of
� and the best �-periodic basis element can be recovered from the data itself.

5.5.5 Patterns in Astronomical Data

To examine the performance of the Periodicity Transform in the detection of more
complex patterns, a three minute segment of astronomical data gathered by the Voy-
ager spacecraft (published on audio CD in [D: 42]) was analyzed. When listening to
this CD, there is an apparent pulse rate with approximately �� (not necessarily equal
length) pulses in each 32 second segment. Because of the length of the data, sig-
nificant downsampling was required. This was accomplished by filtering the digital
audio data in overlapping sections and calculating the energy value in each section.
The resulting sequence approximates the amplitude of the Voyager signal with an
effective sampling rate of �����

����
� ���
 Hz.

The downsampled data was first analyzed with a Fourier Transform. The most
significant sinusoidal components occur at �����, �����, ���
�, �����, ����� and
����� Hz, which correspond to periodicities at ����, ���, ���, ���, 
�� and ��� sec-
onds. Because the Fourier Transform is linear-in-frequency, the values are less accu-
rate at long periods (low frequencies). For example, while the time interval between
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adjacent Fourier bins is only ���� sec for the shortest of the significant periodici-
ties (��� sec), the time between bins at the longest detected periodicity (���� sec) is
approximately���� sec.

Applying the PT to the downsampled data using the % -Best� algorithm (with
% � ��) gives the output shown in Table 5.6. This is plotted graphically in Fig. 5.16.

Table 5.6. � -Best� Analysis of Voyager Data

Period p 31 217 434 124 868 328 656 799 880 525
Time (seconds) 1.77 12.4 24.8 7.09 49.6 18.74 37.49 45.66 50.29 30
Norm (in percent) 29.6 6.2 4.3 2.8 8.6 3.7 5.9 4.9 3.6 2.7
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Fig. 5.16. Applying the PT to the down-
sampled data using the � -Best� algo-
rithm locates many of the most significant
periodic features of the data.

The shortest periodicity at ���� second (period 31) corresponds well with the
pulse rate that is apparent when listening to the data directly. The order in which the
results appear in Table 5.6 mimics the operation of the algorithm. For example, there
are three sets of related periodicities. The first three �� � ��� � ��� are in the ratio
� � � � ��, the next two ��� � ��� are in the ratio � � � (and are also in the ratio 4:28
relative to the periodicity 31). The third set ��� � �
� are in the ratio � � �. These are
indicative of the decomposition of large periods by Step 2 of the% -Best � algorithm.
While these longer periodicities are not immediately obvious when “listening to” or
“looking at” at the raw data, their importance is reinforced by a comparison with
the Fourier results. The PT periodicities at ���� and ���� correspond to the Fourier
periodicities at ��� and ���� (recall the inherent margin of error in the bin width of
the FFT). Also, the periodicity at ���� contains the � � � subperiod at ��� detected
by the FFT. The ���� second pulse is approximately ��� of the 
�� second Fourier
result, reinforcing the interpretation that this was an underlying “fundamental.”

On the other hand, the appearance of several periodicities without mutual factors
clustered at one time scale (i.e., the periodicities at �
���, 
���� and ���� seconds),
suggests that one long periodicity in the data may have been inexactly decomposed
into several related components. This relates to what may be the most severe limita-
tion to the general applicability of the PT: when the sample interval does not corre-
spond to a factor of some periodicity in the data, the decomposition of small periods
from larger ones is difficult. Qualitatively, this can be thought of as the converse of
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the limitation of the Fourier method; while the linear-in-frequency behavior of the
FFT increases the error at long periods, the linear-in-period behavior of the PT causes
inefficiencies at short periods. Just as an increase in the amount of data used in the
FFT can provide better precision, a decrease in the sample interval can improve the
performance of the PT. Nonetheless, there is no general method of ensuring a priori
that a particular periodicity in unknown data will correspond to a multiple of the
sample rate. To see this effect clearly, we resampled the data at an effective sam-
pling interval of ����
 second, and then reapplied the % -Best� algorithm. In this
case, the longer periods were not as successfully decomposed. Similar sensitivities
to the choice of sampling rates were observed in an early critique of the Buys-Ballot
method [B: 21].

This “integer periodicity” limitation of the PT can be mitigated by the proper
choice of a highly factorable integer as the sample interval. In general, the identifi-
cation of small periodicities within an arbitrary data set will be most efficient when
the sample interval itself contains many factors (many exact periodicities). These in-
tervals, each composed of many periodic “building blocks”, are easily combined to
identify larger multiples. In fact, this was the reason we chose the effective sampling
rate based on a subsampling interval of �
��, which factors as �� ��� �
 ��. This inter-
val has a large number of factors within the desired range of effective sampling rates
(0.05 seconds to 0.1 seconds) consistent with a downsampled data set of reasonable
length.

5.5.6 Discussion of PT

The Periodicity Transform is designed to locate periodicities within a data set by
projecting onto the (nonorthogonal) periodic subspaces. The method decomposes
signals into their basic periodic components, creating its own “basis elements” as
linear combinations of delta-like �-periodic basis vectors.

In some cases, the PT can provide a clearer explanation of the underlying na-
ture of the signals than standard techniques. For instance, the signal 	 of Fig. 5.15
is decomposed into (roughly) �� complex sinusoids by the DFT, or into two peri-
odic sequences by the PT. In a strict mathematical sense, they are equivalent, since
the residuals are equal in norm. But the PT “explanation” is simpler and allows the
recovery of the individual elements from their sum. When periodicity provides a bet-
ter explanation of a signal or an event than does frequency, then the PT is likely to
outperform the DFT. Conversely, when the signal incorporates clear frequency rela-
tionships, the DFT will likely provide a clearer result. In general, an analysis of truly
unknown signals will benefit from the application of all available techniques.

Like the Hadamard transform [B: 245], the PT can be calculated using only ad-
ditions (no multiplications are required). As shown in Sect. 5.5.2, each projection
requires approximately � operations. But the calculations required to project onto
(say)
� overlap the calculations required to project onto
	� in a nontrivial way, and
these redundancies can undoubtedly be exploited in a more efficient implementation.

Several methods for finding the “best” basis functions from among some (pos-
sibly large) set of potential basis elements have been explored in the literature [B:
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24], many of which are related to variants of general “projection pursuit” algorithms
[B: 99]. Usually these are set in the context of choosing a representation for a given
signal from among a family of prespecified frame elements. For instance, a Fourier
basis, a collection of Gabor functions, a wavelet basis, and a wavelet packet basis
may form the elements of an over-complete “dictionary.” Coifman [B: 33] proposes
an algorithm that chooses a basis to represent a given signal based on a measure of
entropy. In [B: 139], a greedy algorithm called “matching-pursuit” is presented that
successively decomposes a signal by picking the element that best correlates with the
signal, subtracts off the residual, and decomposes again. This is analogous to (though
somewhat more elaborate than) the Best-Correlation algorithm of Sect. 5.5.3. Nafie
[B: 152] proposes an approach that maintains “active” and “inactive” dictionaries.
Elements are swapped into the active dictionary when they better represent the sig-
nal than those currently active. This is analogous to the% -Best algorithm. The “best
basis” approach of [B: 119] uses a thresholding method aimed at signal enhancement,
and is somewhat analogous to the Small-To-Large algorithm. Using an .� norm, [B:
29] proposes a method that exploits Karmarkar’s interior point linear programming
method. The “method of frames” [B: 39] essentially calculates the pseudo-inverse of
a (large rectangular) matrix composed of all the vectors in the dictionary.

While these provide analogous approaches to the problems of dealing with a re-
dundant spanning set, there are two distinguishing features of the Periodicity Trans-
form. The first is that the �-periodic basis elements are inherently coupled together.
For instance, it does not make any particular sense to chose (say) Æ�

�
, Æ�

�
, Æ�

�
, and Æ�




as a basis for the representation of a periodic signal. The �-periodic basis elements
are fundamentally coupled together, and none of the methods were designed to deal
with such a coupling. More generally, none of the methods is able (at least directly)
to exploit the kind of structure (for instance, the containment of certain subspaces
and the equality of certain residuals) that is inherent when dealing with the periodic
subspaces of the PT.

5.6 Summary

A transform must ultimately be judged by the insight it provides and not solely by
the elegance of its mathematics. Transforms and the various algorithms encountered
in this chapter are mathematical operations that have no understanding of psycho-
acoustics or of the human perceptual apparatus. Thus a triangle wave may be de-
composed into its appropriate harmonics by the Fourier transform irrespective of the
time axis. It makes no difference whether the time scale is milliseconds (in which
case we would hear pitch) or on the order of seconds (in which case we would hear
rhythm). It is, therefore, up to us to include such extra information in the interpreta-
tion of the transformed data.
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