Periodicity Transforms decompose a data sequence into a sum of simple periodic sequences by projecting onto a set of periodic subspaces, leaving residuals whose periodicities have been removed. As the name suggests, this decomposition is accomplished directly in terms of periodic sequences and not in terms of frequency or scale, as do the Fourier and Wavelet Transforms. In consequence, the representation is linear-in-period, rather than linear-in-frequency or linear-in-scale. Unlike most transforms, the set of basis vectors is not specified a priori, rather, the Periodicity Transform finds its own "best" set of basis elements. Technically, the collection of all periodic subspaces forms a frame, a more-than-complete spanning set. The Periodicity Transforms specify ways of sensibly handling the redundancy by exploiting some of the general properties of the periodic subspaces.
The algorithms are derived and analyzed, and their output compared to that of the Fourier Transform in a number of examples. One application is the finding and grouping of rhythms in a musical score, another is the separation of periodic waveforms with overlapping spectra, and a third is the finding of patterns in astronomical data. Examples demonstrate both the strengths and weaknesses of the method. A companion paper explores the application of Periodicity Transforms to the automatic detection of rhythm in musical performance.
Click here for more information about periodicity transforms, and to download MATLAB programs.